A104393 Sums of 3 distinct positive pentatope numbers (A000332).
21, 41, 51, 55, 76, 86, 90, 106, 110, 120, 132, 142, 146, 162, 166, 176, 197, 201, 211, 216, 226, 230, 231, 246, 250, 260, 281, 285, 295, 315, 336, 337, 341, 346, 350, 351, 366, 370, 371, 380, 401, 405, 406, 415, 435, 457, 461, 471, 491, 501
Offset: 0
References
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
Links
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- J. V. Post, Table of Polytope Numbers, Sorted, Through 1,000,000.
- Eric Weisstein's World of Mathematics, Pentatope Number.
Programs
-
Mathematica
Total/@Subsets[Table[Binomial[n+3,4],{n,10}],{3}]//Sort (* Harvey P. Dale, Feb 14 2018 *)
Formula
a(n) = Ptop(i) + Ptop(j) + Ptop(k) for some positive i=/=j=/=k and Ptop(n) = binomial(n+3,4).
Extensions
Extended by Ray Chandler, Mar 05 2005
Comments