A104395 Sums of 5 distinct positive pentatope numbers (A000332).
126, 182, 217, 237, 247, 251, 266, 301, 321, 331, 335, 357, 377, 386, 387, 391, 412, 421, 422, 426, 441, 442, 446, 451, 455, 456, 477, 497, 507, 511, 532, 542, 546, 551, 561, 562, 566, 576, 581, 586, 591, 595, 606, 616, 620, 626, 630, 642, 646, 650
Offset: 1
References
- Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 55-57, 1996.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2003), 65-75.
- Eric Weisstein's World of Mathematics, Pentatope Number.
Programs
-
Maple
N:= 1000: # for terms <= N ptop:= n -> n*(n+1)*(n+2)*(n+3)/24: P:= 1: for i from 1 while ptop(i) < N do P:= P * (1 + x*y^ptop(i)) od: sort(map(degree,convert(convert(series(coeff(P,x,5),y,N+1),polynom),list))); # Robert Israel, Nov 20 2023
Formula
a(n) = Ptop(g) + Ptop(h) + Ptop(i) + Ptop(j) + Ptop(k) for some positive g=/=h=/=i=/=j=/=k and Ptop(n) = binomial(n+3,4).
Extensions
Extended by Ray Chandler, Mar 05 2005
Comments