A104435 Number of ways to split 1, 2, 3, ..., 2n into 2 arithmetic progressions each with n terms.
1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1
Examples
From _R. J. Mathar_, Apr 14 2024: (Start) a(2)=3 offers 3 ways of splitting (1,2,3,4): {(1,2),(3,4)}, {(1,3),(2,4)}, {(1,4),(2,3)}. a(n)=2 for n>=3 because there are at least the two ways of splitting (1,2,..,2n) into the even and odd numbers. (End)
Links
- Index entries for linear recurrences with constant coefficients, signature (1).
Crossrefs
Programs
-
PARI
a(n) = if(n <= 2, [1,3][n], 2) \\ David A. Corneth, Apr 14 2024
Formula
a(1) = 1, a(2) = 3, a(n) = 2 for n >= 3. Proof of the latter: if the common difference in an arithmetic progression, starting with a number at least 1, is at least 3 then the largest term in that arithmetic progression is at least 1 + 3*(n-1) = 3*n - 2. But 3*n - 2 > 2*n for n > 2. - David A. Corneth, Apr 14 2024
G.f.: x*(1 + 2*x - x^2)/(1 - x). - Stefano Spezia, Apr 14 2024
Extensions
More terms from David A. Corneth, Apr 14 2024
Comments