A104479 Positive integers n such that n^16 + 1 is semiprime (A001358).
3, 4, 9, 12, 14, 16, 18, 20, 26, 29, 40, 41, 48, 58, 70, 73, 81, 87, 92, 96, 104, 111, 113, 114, 118, 122, 130, 140, 142, 144, 146, 150, 157, 162, 164, 167, 168, 172, 173, 184, 187, 192, 194, 195, 199, 200, 202, 208, 220, 230, 232, 244, 253, 256, 266, 278, 292, 295, 298
Offset: 1
Examples
3^16 + 1 = 43046722 = 2 * 21523361, 4^16 + 1 = 4294967297 = 641 * 6 700417, 9^16 + 1 = 1853020188851842 = 2 * 926510094425921, 12^16 + 1 = 184884258895036417 = 153953 * 1200913648289, 200^16 + 1 = 6553600000000000000000000000000000001 = 162123499503471553 * 40423504427621041217.
Links
- Robert Price, Table of n, a(n) for n = 1..102
Crossrefs
Programs
-
Magma
IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [2..300]|IsSemiprime(n^16+1)] // Vincenzo Librandi, Dec 21 2010
-
Mathematica
Select[Range[300],PrimeOmega[#^16+1]==2&] (* Harvey P. Dale, Aug 21 2011 *) Select[Range[1000], 2 == Total[Transpose[FactorInteger[#^16 + 1]][[2]]] &] (* Robert Price, Mar 11 2015 *)
Formula
a(n)^16 + 1 is semiprime (A001358).
Extensions
More terms from Vincenzo Librandi, Dec 21 2010
Corrected (adding 202, 208, and 220) by Harvey P. Dale, Aug 21 2011
Comments