A104494 Positive integers n such that n^17 + 1 is semiprime (A001358).
2, 58, 66, 166, 268, 270, 408, 600, 672, 808, 822, 970, 1050, 1090, 1150, 1200, 1212, 1380, 1578, 1752, 1912, 1950, 1986, 2016, 2038, 2292, 2340, 2548, 2590, 2656, 2718, 2800, 2856, 3162, 3300, 3342, 3738, 4138, 4152, 4228, 4270, 4272, 4362, 4782, 5080, 5166
Offset: 1
Examples
2^17 + 1 = 131073 = 3 * 43691, 58^17 + 1 = 951208868148684143308060622849 = 59 * 16122184205909900734034925811, 66^17 + 1 = 8555529718761317069203003539457 = 67 * 127694473414348015958253784171, 1050^17 + 1 = 2292018317801032401637344360351562500000000000000001 = 1051 * 2180797638250268698037435166842590390104662226451.
Links
- Robert Price, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1200]|IsSemiprime(n^17+1)]; // Vincenzo Librandi, Mar 10 2015
-
Mathematica
Select[Range[1000000], PrimeQ[# + 1] && PrimeQ[(#^17 + 1)/(# + 1)] &] (* Robert Price, Mar 10 2015 *) Select[Range[5200],PrimeOmega[#^17+1]==2&] (* Harvey P. Dale, Mar 07 2017 *)
-
PARI
for(n=1,3000,if(!ispseudoprime(n^17+1),forprime(p=1,10^4,if((n^17+1)%p==0,if(ispseudoprime((n^17+1)/p),print1(n,", "));break)))) \\ Derek Orr, Mar 09 2015
Formula
a(n)^17 + 1 is semiprime (A001358).
Extensions
a(14)-a(46) from Robert Price, Mar 09 2015