A104503 Coefficients of the C-Dyson Mod 27 identity.
1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 66, 86, 113, 146, 189, 241, 308, 389, 492, 615, 770, 956, 1187, 1463, 1802, 2207, 2701, 3288, 3999, 4842, 5857, 7056, 8491, 10183, 12197, 14564, 17369, 20658, 24539, 29075, 34408, 40627, 47912, 56385, 66277
Offset: 0
Keywords
Examples
1 + q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 10*q^6 + 14*q^7 + 20*q^8 + 27*q^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Dyson Mod 27 Identities
Programs
-
Mathematica
QP := QPochhammer; f[x_, y_] := QP[-x, x*y]*QP[-y, x*y]*QP[x*y, x*y]; a[n_]:= SeriesCoefficient[f[-q^12, -q^15]/f[-q, -q^2], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 08 2018 *)
-
PARI
{a(n)=local(m); if(n<0, 0, m=sqrtint(24*n+25); polcoeff( sum(k= -((m-5)\18), (m+5)\18, (-1)^k*x^((9*k^2-5*k)*3/2),x*O(x^n))/ eta(x+x*O(x^n)), n))} /* Michael Somos, Mar 15 2006 */
-
PARI
{a(n)=if(n<1, n==0, polcoeff( sum(k=0, sqrtint(n+1)-1, x^(k^2+2*k)* prod(j=1, k, (1-x^(3*j))/(1-x^j)/(1-x^(2*j+1))/(1-x^(2*j+2)), 1+O(x^(n-k^2-2*k+1)))/(1-x)/(1-x^2) ), n))} /* Michael Somos, Mar 15 2006 */
-
PARI
{a(n) = local(A); if( n<0, 0, n++; A = eta(x + x*O(x^n)) ; polcoeff( - sum(k=0, n, (k%3==1) * polcoeff(A, k) * x^k) / A, n))} /* Michael Somos, Sep 29 2007 */
Formula
Expansion of f(-q^6,-q^21)/f(-q,-q^2) in powers of q where f() is Ramanujan's theta function.
Given A=A0+A1+A2+A3+A4 is the 5-section, then 0= A0^2*A3^2 +2*A1^2*A2^2 -A0*A2^3 -A3*A1^3 -A0*A1*A2*A3.
G.f.: Product_{k>0} (1-x^(27k))(1-x^(27k-6))(1-x^(27k-21))/(1-x^k).
G.f.: Sum_{k>0} x^(k^2+2k) ( Product_{j=1..k} 1-x^(3j) )/ ( (Product_{j=1..2k+2} (1-x^j)) (Product_{j=1..k}(1-x^j)) ).