cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104503 Coefficients of the C-Dyson Mod 27 identity.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 20, 27, 37, 49, 66, 86, 113, 146, 189, 241, 308, 389, 492, 615, 770, 956, 1187, 1463, 1802, 2207, 2701, 3288, 3999, 4842, 5857, 7056, 8491, 10183, 12197, 14564, 17369, 20658, 24539, 29075, 34408, 40627, 47912, 56385, 66277
Offset: 0

Views

Author

Eric W. Weisstein, Mar 11 2005

Keywords

Examples

			1 + q + 2*q^2 + 3*q^3 + 5*q^4 + 7*q^5 + 10*q^6 + 14*q^7 + 20*q^8 + 27*q^9 + ...
		

Crossrefs

Programs

  • Mathematica
    QP := QPochhammer; f[x_, y_] := QP[-x, x*y]*QP[-y, x*y]*QP[x*y, x*y]; a[n_]:= SeriesCoefficient[f[-q^12, -q^15]/f[-q, -q^2], {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 08 2018 *)
  • PARI
    {a(n)=local(m); if(n<0, 0, m=sqrtint(24*n+25); polcoeff( sum(k= -((m-5)\18), (m+5)\18, (-1)^k*x^((9*k^2-5*k)*3/2),x*O(x^n))/ eta(x+x*O(x^n)), n))} /* Michael Somos, Mar 15 2006 */
    
  • PARI
    {a(n)=if(n<1, n==0, polcoeff( sum(k=0, sqrtint(n+1)-1, x^(k^2+2*k)* prod(j=1, k, (1-x^(3*j))/(1-x^j)/(1-x^(2*j+1))/(1-x^(2*j+2)), 1+O(x^(n-k^2-2*k+1)))/(1-x)/(1-x^2) ), n))} /* Michael Somos, Mar 15 2006 */
    
  • PARI
    {a(n) = local(A); if( n<0, 0, n++; A = eta(x + x*O(x^n)) ; polcoeff( - sum(k=0, n, (k%3==1) * polcoeff(A, k) * x^k) / A, n))} /* Michael Somos, Sep 29 2007 */

Formula

Expansion of f(-q^6,-q^21)/f(-q,-q^2) in powers of q where f() is Ramanujan's theta function.
Given A=A0+A1+A2+A3+A4 is the 5-section, then 0= A0^2*A3^2 +2*A1^2*A2^2 -A0*A2^3 -A3*A1^3 -A0*A1*A2*A3.
G.f.: Product_{k>0} (1-x^(27k))(1-x^(27k-6))(1-x^(27k-21))/(1-x^k).
G.f.: Sum_{k>0} x^(k^2+2k) ( Product_{j=1..k} 1-x^(3j) )/ ( (Product_{j=1..2k+2} (1-x^j)) (Product_{j=1..k}(1-x^j)) ).
A104501(n) = A104503(n-1) + A104504(n-2) unless n=0. - Michael Somos, Sep 29 2007