cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104548 Triangle read by rows giving coefficients of Bessel polynomial p_n(x).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 15, 15, 0, 1, 10, 45, 105, 105, 0, 1, 15, 105, 420, 945, 945, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 0
Offset: 0

Views

Author

Eric W. Weisstein, Mar 14 2005

Keywords

Examples

			Bessel polynomials begin with:
      x;
      x +     x^2;
    3*x +   3*x^2 +    x^3;
   15*x +  15*x^2 +  6*x^3 +    x^4;
  105*x + 105*x^2 + 45*x^3 + 10*x^4 + x^5;
  ...
Triangle of coefficients begins as:
  0;
  1,  0;
  1,  1    0;
  1,  3,   3     0;
  1,  6,  15,   15      0;
  1, 10,  45,  105,   105      0;
  1, 15, 105,  420,   945,   945       0;
  1, 21, 210, 1260,  4725, 10395,  10395       0;
  1, 28, 378, 3150, 17325, 62370, 135135, 135135    0;
		

Crossrefs

Essentially the same as A001498 (the main entry).

Programs

  • Magma
    A104548:= func< n,k | k eq n select 0 else Binomial(n-1,k)*Factorial(n+k-1)/(2^k*Factorial(n-1)) >;
    [A104548(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 02 2023
    
  • Mathematica
    T[n_, k_]:= If[k==n, 0, Binomial[n-1,k]*(n+k-1)!/(2^k*(n-1)!)];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 02 2023 *)
  • SageMath
    def A104548(n,k): return 0 if (k==n) else binomial(n-1,k)*factorial(n+k-1)/(2^k*factorial(n-1))
    flatten([[A104548(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 02 2023

Formula

From G. C. Greubel, Jan 02 2023: (Start)
T(n, k) = binomial(n-1,k)*(n+k-1)!/(2^k*(n-1)!), with T(n, n) = 0.
Sum_{k=0..n} T(n, k) = A001515(n-1).
Sum_{k=0..n} (-1)^k*T(n, k) = A000806(n-1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000085(n-1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A001464(n-1). (End)

Extensions

T(0, 0) = 0 prepended by G. C. Greubel, Jan 02 2023