A104548 Triangle read by rows giving coefficients of Bessel polynomial p_n(x).
0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 15, 15, 0, 1, 10, 45, 105, 105, 0, 1, 15, 105, 420, 945, 945, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 0
Offset: 0
Examples
Bessel polynomials begin with: x; x + x^2; 3*x + 3*x^2 + x^3; 15*x + 15*x^2 + 6*x^3 + x^4; 105*x + 105*x^2 + 45*x^3 + 10*x^4 + x^5; ... Triangle of coefficients begins as: 0; 1, 0; 1, 1 0; 1, 3, 3 0; 1, 6, 15, 15 0; 1, 10, 45, 105, 105 0; 1, 15, 105, 420, 945, 945 0; 1, 21, 210, 1260, 4725, 10395, 10395 0; 1, 28, 378, 3150, 17325, 62370, 135135, 135135 0;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Eric Weisstein's World of Mathematics, Bessel Polynomial
Programs
-
Magma
A104548:= func< n,k | k eq n select 0 else Binomial(n-1,k)*Factorial(n+k-1)/(2^k*Factorial(n-1)) >; [A104548(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 02 2023
-
Mathematica
T[n_, k_]:= If[k==n, 0, Binomial[n-1,k]*(n+k-1)!/(2^k*(n-1)!)]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 02 2023 *)
-
SageMath
def A104548(n,k): return 0 if (k==n) else binomial(n-1,k)*factorial(n+k-1)/(2^k*factorial(n-1)) flatten([[A104548(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 02 2023
Formula
From G. C. Greubel, Jan 02 2023: (Start)
T(n, k) = binomial(n-1,k)*(n+k-1)!/(2^k*(n-1)!), with T(n, n) = 0.
Sum_{k=0..n} T(n, k) = A001515(n-1).
Sum_{k=0..n} (-1)^k*T(n, k) = A000806(n-1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000085(n-1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A001464(n-1). (End)
Extensions
T(0, 0) = 0 prepended by G. C. Greubel, Jan 02 2023