A104556 Matrix inverse of triangle A001497 of Bessel polynomials, read by rows; essentially the same as triangle A096713 of modified Hermite polynomials.
1, -1, 1, 0, -3, 1, 0, 3, -6, 1, 0, 0, 15, -10, 1, 0, 0, -15, 45, -15, 1, 0, 0, 0, -105, 105, -21, 1, 0, 0, 0, 105, -420, 210, -28, 1, 0, 0, 0, 0, 945, -1260, 378, -36, 1, 0, 0, 0, 0, -945, 4725, -3150, 630, -45, 1, 0, 0, 0, 0, 0, -10395, 17325, -6930, 990, -55, 1, 0, 0, 0, 0, 0, 10395, -62370, 51975, -13860, 1485, -66, 1
Offset: 0
Examples
Rows begin: 1; -1, 1; 0, -3, 1; 0, 3, -6, 1; 0, 0, 15, -10, 1; 0, 0, -15, 45, -15, 1; 0, 0, 0, -105, 105, -21, 1; 0, 0, 0, 105, -420, 210, -28, 1; 0, 0, 0, 0, 945, -1260, 378, -36, 1; 0, 0, 0, 0, -945, 4725, -3150, 630, -45, 1; ... The columns being equal in absolute value to the rows of the matrix inverse A001497: 1; 1, 1; 3, 3, 1; 15, 15, 6, 1; 105, 105, 45, 10, 1; 945, 945, 420, 105, 15, 1; ...
Links
- G. C. Greubel, Rows n=0..35 of triangle, flattened
- H. Han and S. Seo, Combinatorial proofs of inverse relations and log-concavity for Bessel numbers, Eur. J. Combinat. 29 (7) (2008) 1544-1554. [From _R. J. Mathar_, Mar 20 2009]
Crossrefs
Programs
-
Mathematica
With[{nmax = 10}, CoefficientList[CoefficientList[Series[(1 - t)*Exp[x*(t - t^2/2)], {t, 0, nmax}, {x, 0, nmax}], t], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 10 2018 *)
-
Sage
# uses[bell_matrix from A264428] # Adds a column 1,0,0,0, ... at the left side of the triangle. bell_matrix(lambda n: (-1)^n if n<2 else 0, 9) # Peter Luschny, Jan 19 2016
Formula
E.g.f. : (1 - t)*exp(x*(t - t^2/2)) = 1 + (-1 + x)*t + (-3*x + x^2)*t^2/2! + ... - Peter Bala, Apr 08 2013
Comments