cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104584 a(n) = (1/2) * ( 3*n^2 + n*(-1)^n ).

Original entry on oeis.org

0, 1, 7, 12, 26, 35, 57, 70, 100, 117, 155, 176, 222, 247, 301, 330, 392, 425, 495, 532, 610, 651, 737, 782, 876, 925, 1027, 1080, 1190, 1247, 1365, 1426, 1552, 1617, 1751, 1820, 1962, 2035, 2185, 2262, 2420
Offset: 0

Views

Author

Gary W. Adamson, Mar 17 2005

Keywords

Comments

Previous name was: Pentagonal wave sequence of the first kind.
Odd-indexed terms = A033570, pentagonal numbers with odd index (1, 12, 35, 70, ...). Even-indexed terms = A049453, 2nd pentagonal numbers with even index (0, 7, 26, 57, 100, ...).
Companion sequence A104585 (Pentagonal wave sequence of the second kind), switches odd with even applications and vice versa. The pentagonal wave sequence triangle A104586 has A104584 in odd columns and A104585 in even columns.
Exponents of q in the identity Sum_{n >= 0} ( q^n*Product_{k = 1..n} (1 - q^(4*k-3)) ) = 1 + q - q^7 - q^12 + q^26 + q^35 - - + + .... Compare with Euler's pentagonal number theorem: Product_{n >= 1} (1 - q^n) = 1 - Sum_{n >= 1} ( q^n*Product_{k = 1..n-1} (1 - q^k) ) = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + + - - .... - Peter Bala, Dec 03 2020

Examples

			a(5) = 35 = A000326(5).
a(6) = 57 = A005449(6).
		

Crossrefs

Programs

  • Magma
    I:=[0, 1, 7, 12, 26]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Apr 04 2013
  • Mathematica
    Table[(1/2) (3 n^2 + n (-1)^n), {n, 0, 100}] (* Vincenzo Librandi, Apr 04 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{0,1,7,12,26},50] (* Harvey P. Dale, Feb 14 2023 *)

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Vincenzo Librandi, Apr 04 2013
a(n) = (1/2) * (3*n^2 + n*(-1)^n ). - Ralf Stephan, May 20 2007
G.f. -x*(1+6*x+3*x^2+2*x^3) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Jan 10 2011
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = 6 - Pi/sqrt(3) - 4*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/sqrt(3) + 3*log(3) - 6. (End)

Extensions

Better name, using formula from Ralf Stephan, Joerg Arndt, Sep 17 2013