A104584 a(n) = (1/2) * ( 3*n^2 + n*(-1)^n ).
0, 1, 7, 12, 26, 35, 57, 70, 100, 117, 155, 176, 222, 247, 301, 330, 392, 425, 495, 532, 610, 651, 737, 782, 876, 925, 1027, 1080, 1190, 1247, 1365, 1426, 1552, 1617, 1751, 1820, 1962, 2035, 2185, 2262, 2420
Offset: 0
Examples
a(5) = 35 = A000326(5). a(6) = 57 = A005449(6).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wikipedia, Pentagonal number theorem.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
I:=[0, 1, 7, 12, 26]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; // Vincenzo Librandi, Apr 04 2013
-
Mathematica
Table[(1/2) (3 n^2 + n (-1)^n), {n, 0, 100}] (* Vincenzo Librandi, Apr 04 2013 *) LinearRecurrence[{1,2,-2,-1,1},{0,1,7,12,26},50] (* Harvey P. Dale, Feb 14 2023 *)
Formula
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Vincenzo Librandi, Apr 04 2013
a(n) = (1/2) * (3*n^2 + n*(-1)^n ). - Ralf Stephan, May 20 2007
G.f. -x*(1+6*x+3*x^2+2*x^3) / ( (1+x)^2*(x-1)^3 ). - R. J. Mathar, Jan 10 2011
From Amiram Eldar, Feb 22 2022: (Start)
Sum_{n>=1} 1/a(n) = 6 - Pi/sqrt(3) - 4*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*Pi/sqrt(3) + 3*log(3) - 6. (End)
Extensions
Better name, using formula from Ralf Stephan, Joerg Arndt, Sep 17 2013
Comments