cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A121017 Stirling transform of A104600.

Original entry on oeis.org

1, 1, 6, 65, 1125, 28132, 950649, 41475961, 2259756900, 149874308367, 11858161118925, 1101069785060610, 118366544943589215, 14564702419742606497, 2031425158227034739646, 318472106732688712103885, 55708816671530680003669185, 10803156636116962310987233404
Offset: 0

Views

Author

Vladeta Jovovic, Sep 08 2006

Keywords

Crossrefs

Row sums of A323099.

Programs

  • Maple
    a:= n-> combinat[bell](n)*add(Stirling2(n, k)*k!, k=0..n): seq(a(n), n=0..19); # Zerinvary Lajos, Sep 30 2006
  • Mathematica
    Table[BellB[n]*Sum[StirlingS2[n, k]*k!, {k, 0, n}], {n, 0, 17}] (* James C. McMahon, Oct 11 2024 *)

Formula

a(n) = (1/(2e)) * Sum_{r,s >= 0} (r*s)^n / (2^r*s!).
a(n) = A000670(n)*A000110(n). - Vladeta Jovovic, Sep 27 2006

Extensions

More terms from Zerinvary Lajos, Sep 30 2006

A121020 Lah transform of A104600.

Original entry on oeis.org

1, 1, 7, 85, 1587, 41981, 1484643, 67306429, 3790883659, 258899180989, 21029065282803, 1999625128004813, 219691693064750283, 27580289062408474861, 3919060527556589637043, 625165018565884343909053
Offset: 0

Views

Author

Vladeta Jovovic, Sep 08 2006, Sep 19 2006

Keywords

Programs

  • Maple
    read "transforms" ; A000670 := proc(n) local k ; if n = 0 then 1; else add(k!*combinat[stirling2](n,k),k=1..n) ; fi ; end: A000110 := proc(n) local k ; add(combinat[stirling2](n,k),k=0..n) ; end: A104600 := proc(n) local k ; add(combinat[stirling1](n,k)*A000670(k)*A000110(k),k=0..n) ; end: A121020 := proc(nmax) local a104600 ; a104600 := [seq(A104600(n),n=0..nmax)] ; LAH(a104600) ; end: A121020(20) ; # R. J. Mathar, Jan 21 2008
  • Mathematica
    a[n_] := a[n] = (1/(2 E)) Sum[Sum[Product[r s + k, {k, 0, n - 1}]/(2^r s!), {r, 0, Infinity}], {s, 0, Infinity}];
    Reap[For[n = 0, n <= 80, n++, Print[n, " ", a[n]]; Sow[a[n]]]][[2, 1]] (* Jean-François Alcover, Apr 04 2020 *)

Formula

a(n) = 1/(2*exp(1))*Sum_{r,s>=0} [r*s]^n/(2^r*s!), where [m]^n = m*(m+1)*...*(m+n-1) is the rising factorial.

Extensions

More terms from R. J. Mathar, Jan 21 2008

A323128 Number T(n,k) of colored set partitions of [n] where elements of subsets have distinct colors and exactly k colors are used; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 4, 0, 1, 18, 30, 0, 1, 74, 360, 360, 0, 1, 310, 3450, 8880, 6240, 0, 1, 1382, 31770, 160080, 271800, 146160, 0, 1, 6510, 298662, 2635920, 8152200, 10190880, 4420080, 0, 1, 32398, 2918244, 42687960, 214527600, 468669600, 460474560, 166924800
Offset: 0

Views

Author

Alois P. Heinz, Aug 30 2019

Keywords

Examples

			T(3,2) = 18: 1a|2a3b, 1a|2b3a, 1b|2a3b, 1b|2b3a, 1a3b|2a, 1b3a|2a, 1a3b|2b, 1b3a|2b, 1a2b|3a, 1b2a|3a, 1a2b|3b, 1b2a|3b, 1a|2a|3b, 1a|2b|3a, 1b|2a|3a, 1a|2b|3b, 1b|2a|3b, 1b|2b|3a.
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,    4;
  0, 1,   18,     30;
  0, 1,   74,    360,     360;
  0, 1,  310,   3450,    8880,    6240;
  0, 1, 1382,  31770,  160080,  271800,   146160;
  0, 1, 6510, 298662, 2635920, 8152200, 10190880, 4420080;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A057427.
Row sums give A104600.
Main diagonal gives A137341.
T(2n,n) gives A324523.

Programs

  • Maple
    A:= proc(n, k) option remember; `if`(n=0, 1, add(k!/(k-j)!
          *binomial(n-1, j-1)*A(n-j, k), j=1..min(k, n)))
        end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[k!/(k - j)! Binomial[n - 1, j - 1]* A[n - j, k], {j, Min[k, n]}]];
    T[n_, k_] := Sum[A[n, k - i] (-1)^i Binomial[k, i], {i, 0, k}];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 30 2020, after Alois P. Heinz *)
Showing 1-3 of 3 results.