A104657 Positive integers n such that n^19 + 1 is semiprime (A001358).
2, 10, 28, 106, 190, 292, 556, 756, 858, 906, 1012, 1030, 1032, 1060, 1372, 1450, 1488, 1720, 1722, 1758, 1782, 1822, 1972, 2356, 2436, 2446, 2620, 2748, 2788, 2998, 3186, 3300, 3318, 3360, 3466, 3510, 3822, 3852, 4138, 4326, 4506, 4908, 5236, 5518, 5782
Offset: 1
Examples
2^19 + 1 = 524289 = 3 * 174763, 10^19 + 1 = 10000000000000000001 = 11 * 909090909090909091, 1012^19 + 1 = 125438178100868833265294241234853844232270960601988910249 = 1013 * 1238284087866424810121364671617510801898035149081825373.
Links
- Robert Price, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Magma
IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1100]|IsSemiprime(n^19+1)]; // Vincenzo Librandi, Mar 10 2015
-
Mathematica
Select[Range[1000000], PrimeQ[# + 1] && PrimeQ[(#^19 + 1)/(# + 1)] &] (* Robert Price, Mar 10 2015 *) Select[Range[5800],PrimeOmega[#^19+1]==2&] (* Harvey P. Dale, Feb 15 2019 *)
Formula
a(n)^19 + 1 is semiprime (A001358).
Extensions
a(12)-a(45) from Robert Price, Mar 09 2015
Comments