cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104657 Positive integers n such that n^19 + 1 is semiprime (A001358).

Original entry on oeis.org

2, 10, 28, 106, 190, 292, 556, 756, 858, 906, 1012, 1030, 1032, 1060, 1372, 1450, 1488, 1720, 1722, 1758, 1782, 1822, 1972, 2356, 2436, 2446, 2620, 2748, 2788, 2998, 3186, 3300, 3318, 3360, 3466, 3510, 3822, 3852, 4138, 4326, 4506, 4908, 5236, 5518, 5782
Offset: 1

Views

Author

Jonathan Vos Post, Apr 21 2005

Keywords

Comments

We have the polynomial factorization: n^19 + 1 = (n + 1) * (n^18 - n^17 + n^16 - n^15 + n^14 - n^13 + n^12 - n^11 + n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1). Hence after the initial n=1 prime the binomial can never be prime. It can be semiprime iff n+1 is prime and (n^18 - n^17 + n^16 - n^15 + n^14 - n^13 + n^12 - n^11 + n^10 - n^9 + n^8 - n^7 + n^6 - n^5 + n^4 - n^3 + n^2 - n + 1) is prime.

Examples

			2^19 + 1 = 524289 = 3 * 174763,
10^19 + 1 = 10000000000000000001 = 11 * 909090909090909091,
1012^19 + 1 = 125438178100868833265294241234853844232270960601988910249 = 1013 * 1238284087866424810121364671617510801898035149081825373.
		

Crossrefs

Programs

  • Magma
    IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1100]|IsSemiprime(n^19+1)]; // Vincenzo Librandi, Mar 10 2015
  • Mathematica
    Select[Range[1000000], PrimeQ[# + 1] && PrimeQ[(#^19 + 1)/(# + 1)] &] (* Robert Price, Mar 10 2015 *)
    Select[Range[5800],PrimeOmega[#^19+1]==2&] (* Harvey P. Dale, Feb 15 2019 *)

Formula

a(n)^19 + 1 is semiprime (A001358).

Extensions

a(12)-a(45) from Robert Price, Mar 09 2015