cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104675 a(n) = C(n+1,n) * C(n+6,1).

Original entry on oeis.org

6, 14, 24, 36, 50, 66, 84, 104, 126, 150, 176, 204, 234, 266, 300, 336, 374, 414, 456, 500, 546, 594, 644, 696, 750, 806, 864, 924, 986, 1050, 1116, 1184, 1254, 1326, 1400, 1476, 1554, 1634, 1716, 1800, 1886, 1974, 2064, 2156, 2250, 2346, 2444, 2544, 2646
Offset: 0

Views

Author

Zerinvary Lajos, Apr 22 2005

Keywords

Examples

			If n=0 then C(0+1,0+0) * C(0+6,1) = C(1,0) * C(6,1) = 1*6 = 6.
If n=5 then C(5+1,5+0) * C(5+6,1) = C(6,5) * C(11,1) = 6*11 = 66.
		

Crossrefs

Programs

  • Magma
    [(n+1)*(n+6): n in [0..50]]; // G. C. Greubel, Mar 01 2025
  • Mathematica
    Table[Binomial[n + 1, n] Binomial[n + 6, 1], {n, 0, 48}] (* or *)
    CoefficientList[Series[2 (3 - 2 x)/(1 - x)^3, {x, 0, 49}], x] (* or *)
    LinearRecurrence[{3, -3, 1}, {6, 14, 24}, 49] (* Michael De Vlieger, Apr 06 2017 *)
  • PARI
    Vec(2*(3 - 2*x) / (1 - x)^3 + O(x^80)) \\ Colin Barker, Apr 06 2017
    
  • PARI
    a(n)=(n+6)*(n+1) \\ Charles R Greathouse IV, Jun 17 2017
    
  • Python
    from sympy import binomial
    def a(n): return binomial(n + 1, n) * binomial(n + 6, 1) # Indranil Ghosh, Apr 06 2017
    

Formula

a(n) = (n+1)*(n+6) = A028557(n+1). - R. J. Mathar, May 19 2008
a(n) = 2*n + a(n-1) + 6 (with a(0)=6). Vincenzo Librandi, Nov 13 2010
From Colin Barker, Apr 06 2017: (Start)
G.f.: 2*(3 - 2*x) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. (End)
E.g.f.: exp(x)*(x^2 + 8x + 6). - Indranil Ghosh, Apr 06 2017
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 137/300.
Sum_{n>=0} (-1)^n/a(n) = 2*log(2)/5 - 47/300. (End)