A104679 a(n) = C(n+5,5)*C(n+10,5).
252, 2772, 16632, 72072, 252252, 756756, 2018016, 4900896, 11027016, 23279256, 46558512, 88884432, 162954792, 288304632, 494236512, 823727520, 1338557220, 2125943820, 3307023720, 5047562520, 7571343780, 11176745580, 16257084480, 23325382080, 33044291280
Offset: 0
Examples
If n=0 then C(0+5,0+0)*C(0+10,5) = C(5,0)*C(10,5) = 1*252 = 252. If n=4 then C(4+5,4+0)*C(4+10,5) = C(9,4)*C(14,5) = 126*2002 = 252252.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (11,-55,165,-330,462,-462,330,-165,55,-11,1).
Crossrefs
Cf. A062190.
Programs
-
Magma
[Binomial(n+5,n)*Binomial(n+10,5): n in [0..30]]; // G. C. Greubel, Nov 25 2017
-
Mathematica
Table[Binomial[n+5,n]Binomial[n+10,5],{n,0,20}] (* Harvey P. Dale, Feb 06 2015 *)
-
PARI
Vec(252/(1-x)^11 + O(x^100)) \\ Colin Barker, Feb 07 2015
Formula
G.f.: 252 / (1-x)^11. - Colin Barker, Feb 07 2015
From Amiram Eldar, Aug 30 2022: (Start)
Sum_{n>=0} 1/a(n) = 5/1134.
Sum_{n>=0} (-1)^n/a(n) = 1280*log(2)/63 - 447047/31752. (End)
Extensions
Corrected and extended by Harvey P. Dale, Feb 06 2015