A104709 Triangle read by rows: T(n,k) = Sum_{j=0..n} 2^(n-j)*binomial(j,k) for n >= 0 and 0 <= k <= n; also, Riordan array (1/((1-x)*(1-2*x)), x/(1-x)).
1, 3, 1, 7, 4, 1, 15, 11, 5, 1, 31, 26, 16, 6, 1, 63, 57, 42, 22, 7, 1, 127, 120, 99, 64, 29, 8, 1, 255, 247, 219, 163, 93, 37, 9, 1, 511, 502, 466, 382, 256, 130, 46, 10, 1, 1023, 1013, 968, 848, 638, 386, 176, 56, 11, 1, 2047, 2036, 1981, 1816, 1486, 1024, 562, 232, 67
Offset: 0
Examples
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins: 1; 3, 1; 7, 4, 1; 15, 11, 5, 1; 31, 26, 16, 6, 1; 63, 57, 42, 22, 7, 1; ...
Links
- Paul Curtz, Accélération de la convergence de certaines séries alternées à l'aide des fonctions de sommation, Thèse de 3ème Cycle d'Analyse Numérique, Faculté des Sciences de l'Université de Paris, 4 mai 1965.
- Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52(3) (2014), 195-202.
Crossrefs
Programs
-
Maple
A104709_row := proc(n) add(add(binomial(n,n-i)*x^(n-k-1),i=0..k),k=0..n-1); coeffs(sort(%)) end; seq(print(A104709_row(n)),n=1..6); # Peter Luschny, Sep 29 2011
-
Mathematica
z = 10; p[n_, x_] := (x + 1)^n; q[0, x_] := 1; q[n_, x_] := x*q[n - 1, x] + 1; p1[n_, k_] := Coefficient[p[n, x], x^k]; p1[n_, 0] := p[n, x] /. x -> 0; d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}] h[n_] := CoefficientList[d[n, x], {x}] TableForm[Table[Reverse[h[n]], {n, 0, z}]] Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A054143 *) TableForm[Table[h[n], {n, 0, z}]] Flatten[Table[h[n], {n, -1, z}]] (* A104709 *) (* Clark Kimberling, Aug 07 2011 *)
Formula
Begin with A055248 as a triangle, delete leftmost column.
The Riordan array factors as (1/(1-2*x), x)*(1/(1-x), x/(1-x)) - the sequence array for 2^n times Pascal's triangle. - Paul Barry, Aug 05 2005
T(n,k) = Sum_{j=0..n-k} C(n-j, k)*2^j. - Paul Barry, Jan 12 2006
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 2*T(n-2,k) - 2*T(n-2,k-1), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 30 2013
Working with an offset of 0, we have exp(x) * (e.g.f. for row n) = (e.g.f. for diagonal n). For example, for n = 3 we have exp(x)*(15 + 11*x + 5*x^2/2! + x^3/3!) = 15 + 26*x + 42*x^2/2! + 64*x^3/3! + 93*x^4/4! + .... The same property holds more generally for Riordan arrays of the form (f(x), x/(1 - x)). - Peter Bala, Dec 21 2014
From Petros Hadjicostas, Jun 05 2020: (Start)
Bivariate o.g.f.: A(x,y) = Sum_{n,k >= 0} T(n,k)*x^n*y^k = 1/(1 - 3*x - x*y + 2*x^2 + 2*x^2*y) = 1/((1 - 2*x)*(1 - x*(y+1))).
The o.g.f. of the n-th row is (2^(n+1) - (1 + y)^(n+1))/(1 - y).
Let B(x,y) be the bivariate o.g.f. of triangular array A054143. Because A054143 is the mirror image of the current array, we have A(x,y) = B(x*y, 1/y) and B(x,y) = A(x*y, 1/y). This makes it easy to identify lower diagonals of the array.
For example, if we want to identify the second lower diagonal of the array (i.e., 7, 11, 16, 22, ...), we take the 2nd derivative of B(x,y) with respect to y, set y = 0, and divide by 2!. (Note that columns in A054143 start at k = 0.) We get the g.f. x^2*(7 - 10*x + 4*x^2)/(1 - x)^3.
It is then easy to derive that T(n,n-2) = A000124(n+1) = (n+1)*(n+2)/2 + 1 for n >= 2 (by ignoring the first three terms of A000124). Of course, in the current case, it is much easier to use the formula for T(n,k) to find T(n,n-2). (End)
T(n,0) = 2^(n+1) - 1 for n >= 0; T(n,k) = T(n-1,k) + T(n-1,k-1) for 1 <= k <= n. - Peter Bala, Jan 30 2023
T(n,1) = 2^(n+1) - n - 2 = A000295(n+1) for n >= 1. - Bernard Schott, Feb 22 2023
Extensions
Name edited and offset changed by Petros Hadjicostas, Jun 04 2020
Comments