cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104721 Expansion of (1+x)^2/(1-4*x^2).

Original entry on oeis.org

1, 2, 5, 8, 20, 32, 80, 128, 320, 512, 1280, 2048, 5120, 8192, 20480, 32768, 81920, 131072, 327680, 524288, 1310720, 2097152, 5242880, 8388608, 20971520, 33554432, 83886080, 134217728, 335544320, 536870912, 1342177280, 2147483648
Offset: 0

Views

Author

Paul Barry, Mar 20 2005

Keywords

Comments

Binomial transform is A033113.
Let b(n) = binomial(n-1, (n-1)/2)*(1-(-1)^n)/2 + binomial(n, n/2)*(1+(-1)^n)/2. Then a(n) = Sum_{k=0..n} b(k)*b(n-k).
If a(1)=2 is dropped, sequence becomes identical to A084568 (Proof immediate by standard manipulation of the two generating functions). - R. J. Mathar, May 19 2008

Programs

  • GAP
    Concatenation([1], List([1..40], n-> 9*2^(n-3) -(-2)^(n-3))); # G. C. Greubel, Jul 14 2019
  • Magma
    [1] cat [9*2^(n-3) -(-2)^(n-3): n in [1..40]]; // G. C. Greubel, Jul 14 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)^2/(1-4x^2),{x,0,40}],x] (* or *) LinearRecurrence[{0,4},{1,2,5},40] (* Harvey P. Dale, Dec 05 2015 *)
  • PARI
    vector(40, n, n--; (9*2^n +(-2)^n -2*0^n)/8) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [1]+[9*2^(n-3) -(-2)^(n-3) for n in (1..40)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = (9*2^n + (-2)^n - 2*0^n)/8.