A104722 Self-convolution of repeated Catalan numbers.
1, 2, 3, 4, 7, 10, 19, 28, 56, 84, 174, 264, 561, 858, 1859, 2860, 6292, 9724, 21658, 33592, 75582, 117572, 266798, 416024, 950912, 1485800, 3417340, 5348880, 12369285, 19389690, 45052515, 70715340, 165002460, 259289580, 607283490
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
CoefficientList[Series[( (1 + x)*(1 - Sqrt[1 - 4*x^2])/(2*x^2))^2, {x, 0, 100}], x] (* G. C. Greubel, Jan 07 2017 *)
-
PARI
Vec( ((1 + x)*(1 - sqrt(1 - 4*x^2))/(2*x^2))^2 + O(x^20)) \\ G. C. Greubel, Jan 07 2017
Formula
G.f.: (1+x)^2*c(x^2)^2, c(x) the g.f. of the Catalan numbers A000108;
Let b(n) = (binomial(n-1, (n-1)/2)/((n-1)/2+1))*(1-(-1)^n)/2 + (binomial(n, n/2)/(n/2+1))*(1+(-1)^n)/2, then a(n) = Sum_{k=0..n} b(k)*b(n-k).
Conjecture: (n+4)*a(n) + (n+1)*a(n-1) - 4*(n+1)*a(n-2) + 4*(2-n)*a(n-3) = 0. - R. J. Mathar, Nov 09 2012
a(n) ~ 2^(n + 1/2) * (9 + (-1)^n) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 10 2018
Comments