cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A309729 Expansion of Sum_{k>=1} x^k/(1 - x^k - 2*x^(2*k)).

Original entry on oeis.org

1, 2, 4, 7, 12, 26, 44, 92, 175, 354, 684, 1396, 2732, 5506, 10938, 21937, 43692, 87578, 174764, 349884, 699098, 1398786, 2796204, 5593886, 11184823, 22372354, 44739418, 89483996, 178956972, 357925242, 715827884, 1431677702, 2863312218, 5726666754, 11453246178, 22906581193
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 14 2019

Keywords

Comments

Inverse Moebius transform of Jacobsthal numbers (A001045).

Crossrefs

Programs

  • Maple
    seq(add(2^d-(-1)^d, d=numtheory:-divisors(n))/3, n=1..50); # Robert Israel, Aug 14 2019
  • Mathematica
    nmax = 36; CoefficientList[Series[Sum[x^k/(1 - x^k - 2 x^(2 k)), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[(1/3) Sum[(2^d - (-1)^d), {d, Divisors[n]}], {n, 1, 36}]
  • PARI
    a(n)={sumdiv(n, d, 2^d - (-1)^d)/3} \\ Andrew Howroyd, Aug 14 2019
    
  • Python
    n = 1
    while n <= 36:
        s, d = 0, 1
        while d <= n:
            if n%d == 0:
                s = s+2**d-(-1)**d
            d = d+1
        print(n,s//3)
    n = n+1 # A.H.M. Smeets, Aug 14 2019

Formula

G.f.: Sum_{k>=1} A001045(k) * x^k/(1 - x^k).
a(n) = (1/3) * Sum_{d|n} (2^d - (-1)^d).
Showing 1-1 of 1 results.