A104763 Triangle read by rows: Fibonacci(1), Fibonacci(2), ..., Fibonacci(n) in row n.
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 5, 1, 1, 2, 3, 5, 8, 1, 1, 2, 3, 5, 8, 13, 1, 1, 2, 3, 5, 8, 13, 21, 1, 1, 2, 3, 5, 8, 13, 21, 34, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 1; 1, 1, 2; 1, 1, 2, 3; 1, 1, 2, 3, 5; 1, 1, 2, 3, 5, 8; 1, 1, 2, 3, 5, 8, 13; ...
Links
- Reinhard Zumkeller, Rows n = 1..100 of table, flattened
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Crossrefs
Cf. A000071 (row sums). - R. J. Mathar, Jul 22 2009
Triangle sums (see the comments): A000071 (Row1; Kn4 & Ca1 & Ca4 & Gi1 & Gi4); A008346 (Row2); A131524 (Kn11); A001911 (Kn12); A006327 (Kn13); A167616 (Kn14); A180671 (Kn15); A180672 (Kn16); A180673 (Kn17); A180674 (Kn18); A052952 (Kn21 & Kn22 & Kn23 & Fi2 & Ze2); A001906 (Kn3 &Fi1 & Ze3); A004695 (Ca2 & Ze4); A001076 (Ca3 & Ze1); A080239 (Gi2); A081016 (Gi3). - Johannes W. Meijer, Sep 22 2010
Programs
-
GAP
Flat(List([1..15], n -> List([1..n], k -> Fibonacci(k)))); # G. C. Greubel, Jul 13 2019
-
Haskell
a104763 n k = a104763_tabl !! (n-1) !! (k-1) a104763_row n = a104763_tabl !! (n-1) a104763_tabl = map (flip take $ tail a000045_list) [1..] -- Reinhard Zumkeller, Aug 15 2013
-
Magma
[Fibonacci(k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 13 2019
-
Mathematica
Table[Fibonacci[k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jul 13 2019 *)
-
PARI
for(n=1,15, for(k=1,n, print1(fibonacci(k), ", "))) \\ G. C. Greubel, Jul 13 2019
-
Sage
[[fibonacci(k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 13 2019
Formula
F(1) through F(n) starting from the left in n-th row.
T(n,k) = A000045(k), 1<=k<=n. - R. J. Mathar, May 02 2008
a(n) = A000045(m), where m= n-t(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 13 2012
G.f.: (x*y)/((x-1)*(x^2*y^2+x*y-1)). - Vladimir Kruchinin, Jun 21 2025
Extensions
Edited by R. J. Mathar, May 02 2008
Extended by R. J. Mathar, Aug 27 2008
Comments