A104767 a(n)=n for n <= 3, a(n) = 2a(n-1) - 2a(n-2) + 2a(n-3) for n >= 4.
0, 1, 2, 3, 4, 6, 10, 16, 24, 36, 56, 88, 136, 208, 320, 496, 768, 1184, 1824, 2816, 4352, 6720, 10368, 16000, 24704, 38144, 58880, 90880, 140288, 216576, 334336, 516096, 796672, 1229824, 1898496, 2930688, 4524032, 6983680, 10780672, 16642048, 25690112, 39657472
Offset: 0
Keywords
Examples
From _Michael Somos_, May 17 2018: (Start) For n=3, (x - y) * (x - y) = x^2 - 2*x*y + y^2 has a(3) = 3 terms. For n=4, (x - y) * (x - y) * (x^2 - y^2) = x^4 - 2*x^3*y + 2*x*y^3 - y^4 has a(4) = 4 terms. for n=2, (x - y) * (x^2 - y^2) = x^3 - x^2*y - x*y^2 + y^3 has a(2) = 2 terms with + sign and also with - sign. For n=3, (x - y) * (x^2 - y^2) * (x^3 - y^3) = x^6 - x^5*y - x^4*y^2 + x^2*y^4 + x*y^5 - y^6 has a(3) = 3 terms with + sign and also with - sign. (End)
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..1000
- Richard P. Stanley, Theorems and Conjectures on Some Rational Generating Functions, arXiv:2101.02131 [math.CO], 2021.
- Index entries for linear recurrences with constant coefficients, signature (2,-2,2).
Crossrefs
Cf. A093996.
Programs
-
GAP
a:=[0,1,2,3,4];; for n in [5..50] do a[n]:=2*a[n-1]-2*a[n-2]+2*a[n-3]; od; a; # Muniru A Asiru, May 17 2018
-
Maple
f:=proc(n) option remember; if n <= 4 then RETURN(n); fi; 2*f(n-4)+f(n-1); end;
-
Mathematica
a[n_] := a[n] = If[n < 4, n, 2a[n - 1] - 2a[n - 2] + 2a[n - 3]]; Table[ a[n], {n, 0, 39}] (* Robert G. Wilson v *) Join[{0}, LinearRecurrence[{2, -2, 2}, {1, 2, 3}, 41]] (* Robert G. Wilson v, May 12 2013 *) Join[{0}, LinearRecurrence[{1, 0, 0, 2}, {1, 2, 3, 4}, 41]] (* Robert G. Wilson v, May 12 2013 *) a[n_] := Length@ ExpandAll@ Product[1 - x^Fibonacci[k], {k, n-1}]; a[1] = 1; (* Robert G. Wilson v, May 12 2013 *) nxt[{a_,b_,c_}]:={b,c,2c-2b+2a}; Join[{0},NestList[nxt,{1,2,3},40][[All,1]]] (* Harvey P. Dale, Nov 30 2021 *)
-
PARI
a=vector(100); a[1]=1;a[2]=2;a[3]=3; for(n=4, #a, a[n] = 2*a[n-1]-2*a[n-2]+2*a[n-3]); concat(0,a) \\ Altug Alkan, May 18 2018
Formula
Extensions
More terms from Robert G. Wilson v, Oct 14 2005
Comments