cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104767 a(n)=n for n <= 3, a(n) = 2a(n-1) - 2a(n-2) + 2a(n-3) for n >= 4.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 10, 16, 24, 36, 56, 88, 136, 208, 320, 496, 768, 1184, 1824, 2816, 4352, 6720, 10368, 16000, 24704, 38144, 58880, 90880, 140288, 216576, 334336, 516096, 796672, 1229824, 1898496, 2930688, 4524032, 6983680, 10780672, 16642048, 25690112, 39657472
Offset: 0

Views

Author

Don N. Page, Oct 13 2005

Keywords

Comments

Also a(n) for n > 0 is the number of terms in the expansion of (x - y) * (x - y) * (x^2 - y^2) * (x^3 - y^3) * ... * (x^F_n-1 - y^F_n-1), where F_n is the n-th Fibonacci number. In this definition one can take y=1. In other words the sequence gives the number of nonzero terms in the polynomial Product {k=1..n-1}, (1 - x^F_k). - Robert G. Wilson v, May 12 2013
Also a(n) for n > 0 is the number of terms in the expansion of Product_{k=2..n+1} (x^F_k - y^F_k) with coefficient +1 (same with -1). We can take y=1 and the Product_{k=2..n+1} (x^F_k - 1) has a(n) terms with coefficient +1 and same with -1. Note that no coefficient is greater than 1 in absolute value. - Michael Somos, May 17 2018

Examples

			From _Michael Somos_, May 17 2018: (Start)
For n=3, (x - y) * (x - y) = x^2 - 2*x*y + y^2 has a(3) = 3 terms.
For n=4, (x - y) * (x - y) * (x^2 - y^2) = x^4 - 2*x^3*y + 2*x*y^3 - y^4 has a(4) = 4 terms.
for n=2, (x - y) * (x^2 - y^2) = x^3 - x^2*y - x*y^2 + y^3 has a(2) = 2 terms with + sign and also with - sign.
For n=3, (x - y) * (x^2 - y^2) * (x^3 - y^3) = x^6 - x^5*y - x^4*y^2 + x^2*y^4 + x*y^5 - y^6 has a(3) = 3 terms with + sign and also with - sign. (End)
		

Crossrefs

Cf. A093996.

Programs

  • GAP
    a:=[0,1,2,3,4];; for n in [5..50] do a[n]:=2*a[n-1]-2*a[n-2]+2*a[n-3]; od; a; # Muniru A Asiru, May 17 2018
    
  • Maple
    f:=proc(n) option remember; if n <= 4 then RETURN(n); fi; 2*f(n-4)+f(n-1); end;
  • Mathematica
    a[n_] := a[n] = If[n < 4, n, 2a[n - 1] - 2a[n - 2] + 2a[n - 3]]; Table[ a[n], {n, 0, 39}] (* Robert G. Wilson v *)
    Join[{0}, LinearRecurrence[{2, -2, 2}, {1, 2, 3}, 41]] (* Robert G. Wilson v, May 12 2013 *)
    Join[{0}, LinearRecurrence[{1, 0, 0, 2}, {1, 2, 3, 4}, 41]] (* Robert G. Wilson v, May 12 2013 *)
    a[n_] := Length@ ExpandAll@ Product[1 - x^Fibonacci[k], {k, n-1}]; a[1] = 1; (* Robert G. Wilson v, May 12 2013 *)
    nxt[{a_,b_,c_}]:={b,c,2c-2b+2a}; Join[{0},NestList[nxt,{1,2,3},40][[All,1]]] (* Harvey P. Dale, Nov 30 2021 *)
  • PARI
    a=vector(100); a[1]=1;a[2]=2;a[3]=3; for(n=4, #a, a[n] = 2*a[n-1]-2*a[n-2]+2*a[n-3]); concat(0,a) \\ Altug Alkan, May 18 2018

Formula

a(n) = n for n <= 4; for n >= 5, a(n) = 2a(n-4) + a(n-1).
G.f.: (x + x^3)/(-2*x^3 + 2*x^2 - 2*x + 1). a(n) = A077943(n-3) + A077943(n-1).

Extensions

More terms from Robert G. Wilson v, Oct 14 2005