cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A104910 a(n) = A104908(n) - 100*A104803(n).

Original entry on oeis.org

0, 0, 16, 35, 37, 91, 175, 214, 316, 401, 590, 713, 1005, 1313, 1694, 2224, 2798, 3635, 4590, 5858, 7486, 9591, 12175, 15548, 19760, 25238, 32134, 40885, 52093, 66222, 84326, 107306
Offset: 1

Views

Author

Zak Seidov, Mar 29 2005

Keywords

Crossrefs

Programs

A104864 "Floor of hypotenuse": a(n)=A104863(n)-10*A104803(n).

Original entry on oeis.org

0, 0, 1, 3, 3, 8, 16, 19, 28, 35, 52, 62, 88, 115, 148, 195, 245, 319, 402, 513, 656, 841, 1067, 1363, 1732, 2213, 2818, 3585, 4569, 5807, 7396, 9411
Offset: 0

Views

Author

Zak Seidov, Mar 28 2005

Keywords

Crossrefs

A104804 "Rounded hypotenuses": a(n) = round(sqrt(a(n-1)^2 + a(n-2)^2)), a(1)=1, a(2)=3.

Original entry on oeis.org

1, 3, 3, 4, 5, 6, 8, 10, 13, 16, 21, 26, 33, 42, 53, 68, 86, 110, 140, 178, 226, 288, 366, 466, 593, 754, 959, 1220, 1552, 1974, 2511, 3194, 4063, 5168, 6574, 8362, 10637, 13530, 17211, 21892, 27847, 35422, 45057, 57314, 72904, 92736, 117962, 150050
Offset: 1

Views

Author

Zak Seidov, Mar 26 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Round[ Sqrt[ a[n - 1]^2 + a[n - 2]^2]]; a[1] = 1; a[2] = 3; Table[ a[n], {n, 48}] (* Robert G. Wilson v, Mar 28 2005 *)
  • Python
    from gmpy2 import isqrt_rem
    A104804_list = [1,3]
    for _ in range(1000):
        i, j = isqrt_rem(A104804_list[-1]**2+A104804_list[-2]**2)
        A104804_list.append(int(i+ int(4*(j-i) >= 1))) # Chai Wah Wu, Aug 16 2016

Formula

a(n) = A063827(n) for n > 2. - Georg Fischer, Oct 07 2018

Extensions

More terms from Robert G. Wilson v, Mar 28 2005

A104805 "Ceiling of hypotenuses": a(n) = ceiling(sqrt(a(n-1)^2 + a(n-2)^2)), a(1)=1, a(2)=3.

Original entry on oeis.org

1, 3, 4, 5, 7, 9, 12, 15, 20, 25, 33, 42, 54, 69, 88, 112, 143, 182, 232, 295, 376, 478, 609, 775, 986, 1255, 1597, 2032, 2585, 3289, 4184, 5322, 6770, 8612, 10955, 13935, 17726, 22548, 28682, 36484, 46409, 59033, 75092, 95519, 121502, 154553, 196595, 250073
Offset: 1

Views

Author

Zak Seidov, Mar 26 2005

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Ceiling[ Sqrt[ a[n - 1]^2 + a[n - 2]^2]]; a[1] = 1; a[2] = 3; Table[ a[n], {n, 48}] (* Robert G. Wilson v, Mar 28 2005 *)

Extensions

More terms from Robert G. Wilson v, Mar 28 2005

A104806 "Round of hypotenuse", see comments.

Original entry on oeis.org

1, 3, 3, 4, 5, 7, 9, 11, 14, 18, 23, 29, 37, 47, 60, 77, 97, 124, 158, 201, 255, 324, 413, 525, 668, 849, 1081, 1374, 1748, 2224, 2829, 3598
Offset: 1

Views

Author

Zak Seidov, Mar 26 2005

Keywords

Comments

Start with a=1, b=3; repeating procedure "c=sqrt[a^2+b^2], a=b,b=c" gives: s = 1,3, Sqrt[10], Sqrt[19], Sqrt[29], 4*Sqrt[3], Sqrt[77],5*Sqrt[5], Sqrt[202],Sqrt[327], 23, 2*Sqrt[214],Sqrt[1385], 3*Sqrt[249],... Then A104806(n)=round[s(n)].

Crossrefs

A104863 a(n) = floor(sqrt(a(n-1)^2 + a(n-2)^2)), a(1)=10, a(2)=30.

Original entry on oeis.org

10, 30, 31, 43, 53, 68, 86, 109, 138, 175, 222, 282, 358, 455, 578, 735, 935, 1189, 1512, 1923, 2446, 3111, 3957, 5033, 6402, 8143, 10358, 13175, 16759, 21317, 27116, 34491, 43873, 55807, 70987, 90297, 114859, 146103, 185845, 236398, 300703, 382500, 486547, 618897
Offset: 1

Views

Author

Zak Seidov, Mar 28 2005

Keywords

Crossrefs

Programs

  • Magma
    A104863:= func< n| n lt 3 select 10*(2*n-1) else Floor(Sqrt(Self(n-1)^2 +Self(n-2)^2)) >;
    [A104863(n): n in [1..60]]; // G. C. Greubel, Jun 27 2021
    
  • Mathematica
    nxt[{a_,b_}]:={b,Floor[Sqrt[a^2+b^2]]}; Transpose[NestList[nxt,{10,30},60]][[1]] (* Harvey P. Dale, Jun 18 2013 *)
  • Sage
    @CachedFunction
    def a(n): return 10*(2*n-1) if (n<3) else floor(sqrt(a(n-1)^2 + a(n-2)^2))
    [a(n) for n in (1..60)] # G. C. Greubel, Jun 27 2021

Formula

For n>=17, a(n) = a(n-2) + a(n-4) + 1 (conjectured). If true then for m>5, a(2*m+1) = 4*F(m) + 25*F(m+1) + 1 and a(2*m+2) = 8*F(m) + 30*F(m+1) + 1 with F(n) = A000045(n). - Ralf Stephan, Nov 15 2010

A104908 a(n) = floor(sqrt(a(n-1)^2 + a(n-2)^2)), a(1)=100, a(2)=300.

Original entry on oeis.org

100, 300, 316, 435, 537, 691, 875, 1114, 1416, 1801, 2290, 2913, 3705, 4713, 5994, 7624, 9698, 12335, 15690, 19958, 25386, 32291, 41075, 52248, 66460, 84538, 107534, 136785, 173993, 221322, 281526, 358106
Offset: 1

Views

Author

Zak Seidov, Mar 29 2005

Keywords

Crossrefs

Programs

  • Magma
    A104908:= func< n| n lt 3 select 100*(2*n-1) else Floor(Sqrt(Self(n-1)^2 +Self(n-2)^2)) >;
    [A104908(n): n in [1..40]]; // G. C. Greubel, Jun 27 2021
    
  • Mathematica
    a[n_]:= a[n]= If[n<3, 100*(2*n-1), Floor[Sqrt[a[n-1]^2 + a[n-2]^2]] ];
    Table[a[n], {n, 40}] (* G. C. Greubel, Jun 27 2021 *)
  • Sage
    @CachedFunction
    def a(n): return 100*(2*n-1) if (n<3) else floor(sqrt(a(n-1)^2 + a(n-2)^2))
    [a(n) for n in (1..40)] # G. C. Greubel, Jun 27 2021

Formula

a(n) = floor(sqrt(a(n-1)^2 + a(n-2)^2)) with a(1) = 100, a(2) = 300.

A104909 a(n) = A104908(n) - 10*A104863(n).

Original entry on oeis.org

0, 0, 6, 5, 7, 11, 15, 24, 36, 51, 70, 93, 125, 163, 214, 274, 348, 445, 570, 728, 926, 1181, 1505, 1918, 2440, 3108, 3954, 5035, 6403, 8152, 10366, 13196, 16788, 21357, 27172, 34562, 43969, 55928, 71150, 90509, 115128, 146446, 186287, 236964, 301424, 383419
Offset: 1

Views

Author

Zak Seidov, Mar 29 2005

Keywords

Crossrefs

Programs

Extensions

Terms a(33) onward added by G. C. Greubel, Jun 27 2021

A128424 a(n) = floor(sqrt(a(n-1)^2 + a(n-2)^2 + a(n-1)*a(n-2))), a(1)=1, a(2)=3.

Original entry on oeis.org

1, 3, 3, 5, 7, 10, 14, 20, 29, 42, 61, 89, 130, 190, 278, 407, 596, 873, 1279, 1874, 2746, 4024, 5897, 8642, 12665, 18561, 27202, 39866, 58426, 85627, 125492, 183917, 269543, 395034, 578950, 848492, 1243525, 1822474, 2670965, 3914489, 5736962
Offset: 1

Views

Author

Zak Seidov, May 04 2007

Keywords

Comments

For a triangle with sides a(n-1) and a(n-2) and a 120-degree angle between them, a(n) is the floor of the value of the third side.
a(n) = A020711(n-4) for 4 <= n <= 41. - Georg Fischer, Nov 02 2018

Crossrefs

Programs

  • Mathematica
    a[1]=1;a[2]=3;a[n_]:=a[n]=Floor[Sqrt[a[n-1]^2+a[n-2]^2+a[n-1]*a[n-2]]] Table[a[n],{n,45}]
    RecurrenceTable[{a[1]==1,a[2]==3,a[n]==Floor[Sqrt[a[n-1]^2+a[n-2]^2+ a[n-1]*a[n-2]]]},a,{n,50}] (* Harvey P. Dale, Oct 01 2018 *)

Formula

Conjectures from Colin Barker, Nov 03 2018: (Start)
G.f.: x*(1 + x - 2*x^2 + x^3 - 2*x^4 + x^5 - x^6) / ((1 - x)*(1 - x - x^3)).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) for n>7.
(End)
Showing 1-9 of 9 results.