A104980 Triangular matrix T, read by rows, that satisfies: SHIFT_LEFT(column 0 of T^p) = p*(column p+1 of T), or [T^p](m,0) = p*T(p+m,p+1) for all m>=1 and p>=-1.
1, 1, 1, 3, 2, 1, 13, 7, 3, 1, 71, 33, 13, 4, 1, 461, 191, 71, 21, 5, 1, 3447, 1297, 461, 133, 31, 6, 1, 29093, 10063, 3447, 977, 225, 43, 7, 1, 273343, 87669, 29093, 8135, 1859, 353, 57, 8, 1, 2829325, 847015, 273343, 75609, 17185, 3251, 523, 73, 9, 1
Offset: 0
Examples
SHIFT_LEFT(column 0 of T^-1) = -1*(column 0 of T); SHIFT_LEFT(column 0 of T^1) = 1*(column 2 of T); SHIFT_LEFT(column 0 of T^2) = 2*(column 3 of T); where SHIFT_LEFT of column sequence shifts 1 place left. Triangle T begins: 1; 1, 1; 3, 2, 1; 13, 7, 3, 1; 71, 33, 13, 4, 1; 461, 191, 71, 21, 5, 1; 3447, 1297, 461, 133, 31, 6, 1; 29093, 10063, 3447, 977, 225, 43, 7, 1; 273343, 87669, 29093, 8135, 1859, 353, 57, 8, 1; 2829325, 847015, 273343, 75609, 17185, 3251, 523, 73, 9, 1; ... Matrix inverse T^-1 is A104984 which begins: 1; -1, 1; -1, -2, 1; -3, -1, -3, 1; -13, -3, -1, -4, 1; -71, -13, -3, -1, -5, 1; -461, -71, -13, -3, -1, -6, 1; ... Matrix T also satisfies: [I + SHIFT_LEFT(T)] = [I - SHIFT_DOWN(T)]^-1, which starts: 1; 1, 1; 2, 1, 1; 7, 3, 1, 1; 33, 13, 4, 1, 1; 191, 71, 21, 5, 1, 1; ... where SHIFT_DOWN(T) shifts columns of T down 1 row, and SHIFT_LEFT(T) shifts rows of T left 1 column, with both operations leaving zeros in the diagonal.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
- Paul Barry, A note on number triangles that are almost their own production matrix, arXiv:1804.06801 [math.CO], 2018.
Crossrefs
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[n
Jean-François Alcover, Aug 09 2018, from PARI *) -
PARI
{T(n,k) = if(n
-
PARI
{T(n,k) = if(n
-
Sage
@CachedFunction def T(n,k): if (k<0 or k>n): return 0 elif (k==n): return 1 elif (k==n-1): return n else: return k*T(n, k+1) + sum( T(j, 0)*T(n, j+k+1) for j in (0..n-k-1) ) flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 07 2021
Formula
T(n, k) = k*T(n, k+1) + Sum_{j=0..n-k-1} T(j, 0)*T(n, j+k+1) for n>k>0, with T(n, n) = 1, T(n+1, n) = n+1, T(n+1, 2) = T(n, 0) for n>=0.
Comments