A104981
Column 1 of triangle A104980; also equals column 0 of triangle A104986, which equals the matrix logarithm of A104980.
Original entry on oeis.org
0, 1, 2, 7, 33, 191, 1297, 10063, 87669, 847015, 8989301, 103996703, 1303132269, 17589153719, 254509227541, 3931158238735, 64573130459613, 1124144767682215, 20677664894412965, 400760695386194687, 8163539437728923181
Offset: 0
-
T[n_, k_]:= T[n, k]= If[nJean-François Alcover, Aug 09 2018 *)
-
{a(n) = if(n<0, 0, (matrix(n+2, n+2, m, j, if(m==j, 1, if(m==j+1, -m+1, -polcoeff((1-1/sum(i=0, m, i!*x^i))/x +O(x^m), m-j-1))))^-1)[n+1,2])}
-
@CachedFunction
def T(n,k):
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (k==n-1): return n
else: return k*T(n, k+1) + sum( T(j, 0)*T(n, j+k+1) for j in (0..n-k-1) )
[T(n,1) for n in (0..30)] # G. C. Greubel, Jun 07 2021
A104986
Matrix logarithm of triangle A104980.
Original entry on oeis.org
0, 1, 0, 2, 2, 0, 7, 4, 3, 0, 33, 14, 7, 4, 0, 191, 66, 27, 11, 5, 0, 1297, 382, 137, 48, 16, 6, 0, 10063, 2594, 843, 270, 79, 22, 7, 0, 87669, 20126, 6041, 1820, 495, 122, 29, 8, 0, 847015, 175338, 49219, 14176, 3679, 848, 179, 37, 9, 0, 8989301, 1694030, 448681, 124828, 31361, 6930, 1371, 252, 46, 10, 0
Offset: 0
Triangle begins:
0;
1, 0;
2, 2, 0;
7, 4, 3, 0;
33, 14, 7, 4, 0;
191, 66, 27, 11, 5, 0;
1297, 382, 137, 48, 16, 6, 0;
10063, 2594, 843, 270, 79, 22, 7, 0;
87669, 20126, 6041, 1820, 495, 122, 29, 8, 0;
847015, 175338, 49219, 14176, 3679, 848, 179, 37, 9, 0;
8989301, 1694030, 448681, 124828, 31361, 6930, 1371, 252, 46, 10, 0; ...
-
nmax = 10;
M = Table[If[n == k, 0, If[n == k+1, -n+1, -Coefficient[(1-1/Sum[i! x^i, {i, 0, n}])/x + O[x]^n, x, n-k-1]]], {n, 1, nmax+1}, {k, 1, nmax+1}];
T[n_, k_] /; 0 <= k <= n := Sum[(-1)^p MatrixPower[M, p][[n+1, k+1]]/p, {p, 1, n+1}]; T[, ] = 0;
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 09 2018, from PARI *)
-
T(n,k)=if(n
A104987
Row sums of triangle A104986, which equals the matrix logarithm of triangle A104980.
Original entry on oeis.org
0, 1, 4, 14, 58, 300, 1886, 13878, 116310, 1090500, 11296810, 128102714, 1578342010, 20998804576, 300081098918, 4584908039142, 74594230462318, 1287634918033836, 23506502407089874, 452508152936326482
Offset: 0
-
(* First program *)
nmax = 19;
M = Table[If[n==k, 0, If[n==k+1, -n+1, -Coefficient[(1 -1/Sum[i!*x^i, {i,0,n}])/x + O[x]^n, x, n-k-1]]], {n,1,nmax+1}, {k,1,nmax+1}];
T[n_, k_]/; 0<=k<=n:= Sum[(-1)^p MatrixPower[M, p][[n+1, k+1]]/p, {p,n+1}]; T[, ] = 0;
a[n_]:= Sum[T[n, k], {k,0,n}];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Aug 09 2018, from PARI *)
(* Second program *)
t[n_, k_]:= t[n, k] = If[n=n, 0, t[n, k]], {n,0,q}, {k,0,q}]];
f[j_]:= f[j]= MatrixPower[M, j];
T[n_, k_]:= T[n, k]= If[k>n-1, 0, Sum[(-1)^(j-1)*f[j][[n+1, k+1]]/j, {j, n}]];
a[n_]:= a[n]= Sum[T[n, k], {k,0,n}];
Table[a[n], {n, 0, 40}] (* G. C. Greubel, Jun 08 2021 *)
-
{a(n)=sum(k=0,n,sum(p=1,n+1, (-1)^p*(matrix(n+1,n+1,m,j,if(m==j,0,if(m==j+1,-m+1, -polcoeff((1-1/sum(i=0,m,i!*x^i))/x+O(x^m),m-j-1))))^p)[n+1,k+1]/p))}
Original entry on oeis.org
1, 2, 1, 8, 4, 1, 42, 20, 6, 1, 266, 120, 38, 8, 1, 1954, 836, 270, 62, 10, 1, 16270, 6616, 2150, 516, 92, 12, 1, 151218, 58576, 19030, 4688, 882, 128, 14, 1, 1551334, 573672, 185674, 46516, 9050, 1392, 170, 16, 1, 17414114, 6159976, 1982310, 502324, 99994, 15956, 2070, 218, 18, 1
Offset: 0
Triangle begins:
1;
2, 1;
8, 4, 1;
42, 20, 6, 1;
266, 120, 38, 8, 1;
1954, 836, 270, 62, 10, 1;
16270, 6616, 2150, 516, 92, 12, 1;
151218, 58576, 19030, 4688, 882, 128, 14, 1;
1551334, 573672, 185674, 46516, 9050, 1392, 170, 16, 1;
17414114, 6159976, 1982310, 502324, 99994, 15956, 2070, 218, 18, 1;
-
t[n_, k_]:= t[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==n-1, n, k*t[n, k+1] + Sum[t[j, 0]*t[n, j+k+1], {j, 0, n-k-1}]]]]; (* t = A104980 *)
M:= With[{q=20}, Table[If[j>i, 0, t[i, j]], {i,0,q}, {j,0,q}]];
Table[MatrixPower[M, 2][[n+1, k+1]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 07 2021 *)
-
T(n,k)= if(n
A104982
Column 3 of triangle A104980, omitting leading zeros.
Original entry on oeis.org
1, 4, 21, 133, 977, 8135, 75609, 775667, 8707057, 106185715, 1398451353, 19786121467, 299384925569, 4825081148819, 82531968286569, 1493412479919371, 28504390805515921, 572363196501249667, 12061937537478658809
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==n-1, n, k*T[n, k+1] + Sum[T[j, 0]*T[n, j+k+1], {j,0,n-k-1}]]]];
Table[T[n+3, 3], {n, 0, 30}] (* G. C. Greubel, Jun 07 2021 *)
-
{a(n) = if(n<0, 0, (matrix(n+4, n+4, m, j, if(m==j, 1, if(m==j+1, -m+1, -polcoeff((1-1/sum(i=0, m, i!*x^i))/x +O(x^m), m-j-1))))^-1)[n+4,4])}
-
@CachedFunction
def T(n,k):
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (k==n-1): return n
else: return k*T(n, k+1) + sum( T(j, 0)*T(n, j+k+1) for j in (0..n-k-1) )
[T(n+3,3) for n in (0..30)] # G. C. Greubel, Jun 07 2021
A104984
Matrix inverse of triangle A104980.
Original entry on oeis.org
1, -1, 1, -1, -2, 1, -3, -1, -3, 1, -13, -3, -1, -4, 1, -71, -13, -3, -1, -5, 1, -461, -71, -13, -3, -1, -6, 1, -3447, -461, -71, -13, -3, -1, -7, 1, -29093, -3447, -461, -71, -13, -3, -1, -8, 1, -273343, -29093, -3447, -461, -71, -13, -3, -1, -9, 1, -2829325, -273343, -29093, -3447, -461, -71, -13, -3, -1, -10, 1
Offset: 0
Triangle begins:
1;
-1, 1;
-1, -2, 1;
-3, -1, -3, 1;
-13, -3, -1, -4, 1;
-71, -13, -3, -1, -5, 1;
-461, -71, -13, -3, -1, -6, 1;
-3447, -461, -71, -13, -3, -1, -7, 1;
-29093, -3447, -461, -71, -13, -3, -1, -8, 1; ...
-
A003319[n_]:= A003319[n]= If[n==0, 0, n! - Sum[j!*A003319[n-j], {j,n-1}]];
T[n_, k_]:= If[k==n, 1, If[k==n-1, -n, -A003319[n-k]]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 07 2021 *)
-
T(n,k)=if(n==k,1,if(n==k+1,-n,-(n-k)!-sum(i=1,n-k-1,i!*T(n-k-i,0))));
-
@CachedFunction
def T(n,k):
if (k==n): return 1
elif (k==n-1): return -n
else: return -factorial(n-k) - sum( factorial(j)*T(n-k-j, 0) for j in (1..n-k-1) )
[[T(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 07 2021
A104989
Row sums of triangle A104988, which equals the matrix square of triangle A104980.
Original entry on oeis.org
1, 3, 13, 69, 433, 3133, 25657, 234537, 2367825, 26176981, 314670353, 4088360569, 57112939433, 853922061413, 13609089281849, 230346936181465, 4127180489763649, 78046835384582069, 1553536327234953153
Offset: 0
-
nmax:=30;
T[n_, k_]:= T[n, k] = If[k<0 || k>n, 0, If[k==n, 1, If[k==n-1, n, k*T[n, k+1] + Sum[T[j, 0]*T[n, j+k+1], {j, 0, n-k-1}]]]]; (* T=A104980 *)
M:= M= With[{q = nmax}, Table[If[j>i, 0, T[i,j]], {i,0,q}, {j,0,q}]];
f:= f= MatrixPower[M, 2];
a[n_]:= a[n]= Sum[f[[n+1, k+1]], {k,0,n}];
Table[a[n], {n, 0, nmax}] (* G. C. Greubel, Jun 08 2021 *)
-
{a(n)=if(n<0,0,sum(k=0,n,(matrix(n+1,n+1,m,j,if(m==j,1,if(m==j+1,-m+1, -polcoeff((1-1/sum(i=0,m,i!*x^i))/x+O(x^m),m-j-1))))^-2)[n+1,k+1]))}
Original entry on oeis.org
1, 3, 1, 15, 6, 1, 93, 39, 9, 1, 675, 285, 75, 12, 1, 5577, 2331, 657, 123, 15, 1, 51555, 21153, 6207, 1269, 183, 18, 1, 526809, 211227, 63549, 13743, 2181, 255, 21, 1, 5895819, 2304321, 704319, 158325, 26739, 3453, 339, 24, 1, 71733585, 27291843, 8424813, 1947711, 343641, 47355, 5145, 435, 27, 1
Offset: 0
Triangle begins:
1;
3, 1;
15, 6, 1;
93, 39, 9, 1;
675, 285, 75, 12, 1;
5577, 2331, 657, 123, 15, 1;
51555, 21153, 6207, 1269, 183, 18, 1;
526809, 211227, 63549, 13743, 2181, 255, 21, 1;
5895819, 2304321, 704319, 158325, 26739, 3453, 339, 24, 1;
71733585, 27291843, 8424813, 1947711, 343641, 47355, 5145, 435, 27, 1;
-
t[n_, k_]:= t[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==n-1, n, k*t[n, k+1] + Sum[t[j, 0]*t[n, j+k+1], {j, 0, n-k-1}]]]]; (* t = A104980 *)
M:= With[{q=20}, Table[If[j>i, 0, t[i, j]], {i,0,q}, {j,0,q}]];
Table[MatrixPower[M, 3][[n+1, k+1]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 07 2021 *)
-
T(n,k)=if(n
A104983
Row sums of triangular matrix T = A104980 which satisfies: SHIFT_LEFT(column 0 of T^p) = p*(column p+1 of T).
Original entry on oeis.org
1, 2, 6, 24, 122, 750, 5376, 43856, 400518, 4046334, 44808104, 539850984, 7032370302, 98516491214, 1477264979352, 23612920280976, 400847064718166, 7202901369491694, 136596819590256984, 2726503675380494408
Offset: 0
-
T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==n, 1, If[k==n-1, n, k*T[n, k+1] + Sum[T[j, 0]*T[n, j+k+1], {j, 0, n-k-1}]]]]; (* T=A104980 *)
Table[Sum[T[n, k], {k,0,n}], {n,0,30}] (* G. C. Greubel, Jun 07 2021 *)
-
{a(n) = if(n<0, 0, sum(k=0, n, (matrix(n+1, n+1, m, j, if(m==j, 1, if(m==j+1, -m+1, -polcoeff((1-1/sum(i=0, m, i!*x^i))/x +O(x^m), m-j-1))))^-1)[n+1,k+1]))};
-
@CachedFunction
def T(n,k):
if (k<0 or k>n): return 0
elif (k==n): return 1
elif (k==n-1): return n
else: return k*T(n, k+1) + sum( T(j, 0)*T(n, j+k+1) for j in (0..n-k-1) )
[sum(T(n,k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 07 2021
A104991
Row sums of triangle A104990, which equals the matrix cube of triangle A104980.
Original entry on oeis.org
1, 4, 22, 142, 1048, 8704, 80386, 817786, 9093340, 109794556, 1431360958, 20047830262, 300343272952, 4793871035416, 81232799446906, 1456671526257106, 27562347560513524, 548844246683051860, 11474015910364016086
Offset: 0
-
nmax:=30;
T[n_, k_]:= T[n, k] = If[k<0 || k>n, 0, If[k==n, 1, If[k==n-1, n, k*T[n, k+1] + Sum[T[j, 0]*T[n, j+k+1], {j, 0, n-k-1}]]]]; (* T=A104980 *)
M:= M= With[{q = nmax}, Table[If[j>i, 0, T[i,j]], {i,0,q}, {j,0,q}]];
f:= f= MatrixPower[M, 3];
a[n_]:= a[n]= Sum[f[[n+1, k+1]], {k,0,n}];
Table[a[n], {n, 0, nmax}] (* G. C. Greubel, Jun 08 2021 *)
-
{a(n)=if(n<0,0,sum(k=0,n,(matrix(n+1,n+1,m,j,if(m==j,1,if(m==j+1,-m+1, -polcoeff((1-1/sum(i=0,m,i!*x^i))/x+O(x^m),m-j-1))))^-3)[n+1,k+1]))}
Showing 1-10 of 15 results.
Comments