A104981 Column 1 of triangle A104980; also equals column 0 of triangle A104986, which equals the matrix logarithm of A104980.
0, 1, 2, 7, 33, 191, 1297, 10063, 87669, 847015, 8989301, 103996703, 1303132269, 17589153719, 254509227541, 3931158238735, 64573130459613, 1124144767682215, 20677664894412965, 400760695386194687, 8163539437728923181
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..440
Programs
-
Mathematica
T[n_, k_]:= T[n, k]= If[n
Jean-François Alcover, Aug 09 2018 *) -
PARI
{a(n) = if(n<0, 0, (matrix(n+2, n+2, m, j, if(m==j, 1, if(m==j+1, -m+1, -polcoeff((1-1/sum(i=0, m, i!*x^i))/x +O(x^m), m-j-1))))^-1)[n+1,2])}
-
Sage
@CachedFunction def T(n,k): if (k<0 or k>n): return 0 elif (k==n): return 1 elif (k==n-1): return n else: return k*T(n, k+1) + sum( T(j, 0)*T(n, j+k+1) for j in (0..n-k-1) ) [T(n,1) for n in (0..30)] # G. C. Greubel, Jun 07 2021
Formula
From Gary W. Adamson, Jul 14 2011: (Start)
Let M = triangle A128175 as an infinite square production matrix (deleting the first "1"):
1, 1, 0, 0, 0, ...
2, 2, 1, 0, 0, ...
4, 4, 3, 1, 0, ...
8, 8, 7, 4, 1, ...
...
a(n) = sum of top row terms of M^(n-1). Example: top row of M^4 = (71, 71, 38, 10, 1), sum = 191 = a(5). (End)
a(0) = 1, a(n) = n * a(n-1) + Sum_{j=1..n} A003319(j) * a(n - j), with offset 0 for the term 1. - F. Chapoton, Feb 26 2018