cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A104981 Column 1 of triangle A104980; also equals column 0 of triangle A104986, which equals the matrix logarithm of A104980.

Original entry on oeis.org

0, 1, 2, 7, 33, 191, 1297, 10063, 87669, 847015, 8989301, 103996703, 1303132269, 17589153719, 254509227541, 3931158238735, 64573130459613, 1124144767682215, 20677664894412965, 400760695386194687, 8163539437728923181
Offset: 0

Views

Author

Paul D. Hanna, Apr 10 2005

Keywords

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= T[n, k]= If[nJean-François Alcover, Aug 09 2018 *)
  • PARI
    {a(n) = if(n<0, 0, (matrix(n+2, n+2, m, j, if(m==j, 1, if(m==j+1, -m+1, -polcoeff((1-1/sum(i=0, m, i!*x^i))/x +O(x^m), m-j-1))))^-1)[n+1,2])}
    
  • Sage
    @CachedFunction
    def T(n,k):
        if (k<0 or k>n): return 0
        elif (k==n): return 1
        elif (k==n-1): return n
        else: return k*T(n, k+1) + sum( T(j, 0)*T(n, j+k+1) for j in (0..n-k-1) )
    [T(n,1) for n in (0..30)] # G. C. Greubel, Jun 07 2021

Formula

From Gary W. Adamson, Jul 14 2011: (Start)
Let M = triangle A128175 as an infinite square production matrix (deleting the first "1"):
1, 1, 0, 0, 0, ...
2, 2, 1, 0, 0, ...
4, 4, 3, 1, 0, ...
8, 8, 7, 4, 1, ...
...
a(n) = sum of top row terms of M^(n-1). Example: top row of M^4 = (71, 71, 38, 10, 1), sum = 191 = a(5). (End)
a(0) = 1, a(n) = n * a(n-1) + Sum_{j=1..n} A003319(j) * a(n - j), with offset 0 for the term 1. - F. Chapoton, Feb 26 2018