A104984 Matrix inverse of triangle A104980.
1, -1, 1, -1, -2, 1, -3, -1, -3, 1, -13, -3, -1, -4, 1, -71, -13, -3, -1, -5, 1, -461, -71, -13, -3, -1, -6, 1, -3447, -461, -71, -13, -3, -1, -7, 1, -29093, -3447, -461, -71, -13, -3, -1, -8, 1, -273343, -29093, -3447, -461, -71, -13, -3, -1, -9, 1, -2829325, -273343, -29093, -3447, -461, -71, -13, -3, -1, -10, 1
Offset: 0
Examples
Triangle begins: 1; -1, 1; -1, -2, 1; -3, -1, -3, 1; -13, -3, -1, -4, 1; -71, -13, -3, -1, -5, 1; -461, -71, -13, -3, -1, -6, 1; -3447, -461, -71, -13, -3, -1, -7, 1; -29093, -3447, -461, -71, -13, -3, -1, -8, 1; ...
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Mathematica
A003319[n_]:= A003319[n]= If[n==0, 0, n! - Sum[j!*A003319[n-j], {j,n-1}]]; T[n_, k_]:= If[k==n, 1, If[k==n-1, -n, -A003319[n-k]]]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 07 2021 *)
-
PARI
T(n,k)=if(n==k,1,if(n==k+1,-n,-(n-k)!-sum(i=1,n-k-1,i!*T(n-k-i,0))));
-
Sage
@CachedFunction def T(n,k): if (k==n): return 1 elif (k==n-1): return -n else: return -factorial(n-k) - sum( factorial(j)*T(n-k-j, 0) for j in (1..n-k-1) ) [[T(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jun 07 2021
Formula
T(n, n) = 1, T(n+1, n) = -(n+1) for n >= 0; otherwise T(n, k) = T(n-k, 0) = -A003319(n-k-1) for n > k+1 and k >= 0.
Sum_{k=0..n} T(n, k) = A104985(n). - G. C. Greubel, Jun 07 2021
Comments