cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A104996 Numerators of coefficients in a series solution to a certain differential equation.

Original entry on oeis.org

1, -3, -5, -193, -13397, -315629, -282682949, -71668311457, -24436072994261, -829687356768133, -5984214162917084933, -4076572731127688098561, -669050282555409820416913, -3254803666762108782733299553, -3704926048371364507765541554757, -975581171350361622823383714646061
Offset: 1

Views

Author

Zak Seidov, Mar 31 2005

Keywords

Comments

Serial solution of o.d.e. (A. Gruzinov, 2005): cos(t)*f'(t) + sin(t)*f''(t) + (3/4)*sin(t)*f(t) = 0, f(-Pi/2) = 1, f'(-Pi/2) = 0, f(t) = 1 - (3/8)*(t + Pi/2)^2 - (5/128)*(t + Pi/2)^4 - (193/15360)*(t + Pi/2)^4 - ... All coefficients (except for 1) are negative, and there is no simple recursion or other formula for the serial coefficients.

Crossrefs

Cf. A104997 (denominators).

Programs

  • Mathematica
    CoefficientList[Series[Hypergeometric2F1[-1/4, 3/4, 1/2, Sin[x]^2], {x, 0, 30}], x][[1 ;; -1 ;; 2]] // Numerator (* Amiram Eldar, Apr 29 2023 *)

Extensions

More terms from Amiram Eldar, Apr 29 2023

A105372 Decimal expansion of Hypergeometric2F1[ -(1/4),3/4,1,1] = sqrt(Pi)/(Gamma[1/4]*Gamma[5/4]).

Original entry on oeis.org

5, 3, 9, 3, 5, 2, 6, 0, 1, 1, 8, 8, 3, 7, 9, 3, 5, 6, 6, 6, 7, 9, 3, 5, 7, 2, 2, 3, 5, 5, 5, 5, 2, 7, 3, 2, 7, 6, 5, 8, 6, 8, 9, 6, 5, 4, 4, 3, 0, 4, 0, 1, 3, 0, 3, 3, 9, 9, 4, 6, 6, 3, 1, 8, 6, 3, 8, 8, 2, 9, 8, 8, 4, 8, 6, 5, 1, 5, 6, 8, 2, 8, 1, 5, 5, 9, 2, 1, 3, 7, 2, 2, 7, 5, 3, 3, 7, 7, 1, 4
Offset: 0

Views

Author

Zak Seidov, Apr 02 2005

Keywords

Comments

This constant appears in solution to an ODE considered in A104996, A104997.

Examples

			0.53935260118837935666793572235555273276586896544304013033994...
		

Crossrefs

Programs

  • Maple
    evalf(1/EllipticK(1/sqrt(2)),120); # Vaclav Kotesovec, Jun 15 2015
  • Mathematica
    RealDigits[1/EllipticK[1/2],10,120][[1]] (* Vaclav Kotesovec, Jun 15 2015 *)
  • PARI
    sqrt(Pi)/(gamma(1/4)*gamma(5/4)) \\ G. C. Greubel, Jan 09 2017

Formula

Hypergeometric2F1[ -(1/4), 3/4, 1, 1] = Sqrt[Pi]/(Gamma[1/4]*Gamma[5/4]).
From Vaclav Kotesovec, Jun 15 2015: (Start)
4*sqrt(Pi)/Gamma(1/4)^2.
1 / EllipticK(1/sqrt(2)) (Maple notation).
1 / EllipticK[1/2] (Mathematica notation).
(End)
Equals Product_{k>=1} (1 + (-1)^k/(2*k)). - Amiram Eldar, Aug 26 2020

Extensions

Last digit corrected by Vaclav Kotesovec, Jun 15 2015

A104241 Decimal expansion of the first zero of the solution to the differential equation cos(t)*f'(t) + sin(t)*f''(t) + (3/4)*sin(t)*f(t) = 0, f(-Pi/2) = 1, f'(-Pi/2) = 0 (negated).

Original entry on oeis.org

2, 2, 2, 0, 5, 6, 5, 6, 6, 7, 4, 7, 5, 8, 0, 6, 0, 9, 1, 8, 6, 1, 9, 9, 2, 1, 2, 9, 3, 3, 7, 6, 3, 3, 4, 6, 9, 7, 9, 4, 1, 7, 6, 1, 6, 3, 3, 9, 1, 2, 6, 4, 1, 5, 6, 1, 7, 2, 2, 1, 0, 7, 8, 7, 1, 6, 1, 4, 7, 9, 4, 5, 0, 6, 0, 2, 5, 5, 1, 5, 7, 6, 7, 8, 6, 0, 6, 7, 2, 2, 5, 4, 3, 9, 4, 0, 5, 2, 2, 3, 3, 4, 5, 2, 9
Offset: 0

Views

Author

Zak Seidov, Apr 02 2005

Keywords

Crossrefs

Programs

  • Mathematica
    RealDigits[x /. FindRoot[Hypergeometric2F1[-1/4, 3/4, 1/2, Sin[x + Pi/2]^2], {x, -0.2}, WorkingPrecision -> 120], 10, 105][[1]] (* Amiram Eldar, Apr 29 2023 *)

Formula

-0.22205656674758060918619921293376334697941...

Extensions

Offset corrected by Michel Marcus, Nov 12 2019
a(53) corrected and more terms added by Amiram Eldar, Apr 29 2023
Showing 1-3 of 3 results.