A105020 Array read by antidiagonals: row n (n >= 0) contains the numbers m^2 - n^2, m >= n+1.
1, 3, 4, 5, 8, 9, 7, 12, 15, 16, 9, 16, 21, 24, 25, 11, 20, 27, 32, 35, 36, 13, 24, 33, 40, 45, 48, 49, 15, 28, 39, 48, 55, 60, 63, 64, 17, 32, 45, 56, 65, 72, 77, 80, 81, 19, 36, 51, 64, 75, 84, 91, 96, 99, 100, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 121
Offset: 0
Examples
Array begins: 1 4 9 16 25 36 49 64 81 100 ... 3 8 15 24 35 48 63 80 99 120 ... 5 12 21 32 45 60 77 96 117 140 ... 7 16 27 40 55 72 91 112 135 160 ... 9 20 33 48 65 84 105 128 153 180 ... ... Triangle begins: 1; 3, 4; 5, 8, 9; 7, 12, 15, 16; 9, 16, 21, 24, 25; 11, 20, 27, 32, 35, 36; 13, 24, 33, 40, 45, 48, 49; 15, 28, 39, 48, 55, 60, 63, 64; 17, 32, 45, 56, 65, 72, 77, 80, 81; 19, 36, 51, 64, 75, 84, 91, 96, 99, 100;
References
- R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 139.
Links
- G. C. Greubel, Antidiagonals n = 0..50, flattened
Crossrefs
Programs
-
Magma
[(k+1)*(2*n-k+1): k in [0..n], n in [0..15]]; // G. C. Greubel, Mar 15 2023
-
Mathematica
t[n_, m_]:= (n^2 - m^2); Flatten[Table[t[i, j], {i,12}, {j,i-1,0,-1}]] (* to view table *) Table[t[i, j], {j,0,6}, {i,j+1,10}]//TableForm (* Robert G. Wilson v, Jul 11 2005 *) Table[(k+1)*(2*n-k+1), {n,0,15}, {k,0,n}]//Flatten (* Roger L. Bagula, Aug 05 2008 *)
-
SageMath
def A105020(n,k): return (k+1)*(2*n-k+1) flatten([[A105020(n,k) for k in range(n+1)] for n in range(16)]) # G. C. Greubel, Mar 15 2023
Formula
a(n) = r^2 - (r^2 + r - m)^2/4, where r = round(sqrt(m)) and m = 2*n+2. - Wesley Ivan Hurt, Sep 04 2021
From G. C. Greubel, Mar 15 2023: (Start)
Sum_{k=0..n} T(n, k) = A002412(n+1).
Extensions
More terms from Robert G. Wilson v, Jul 11 2005
Comments