cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105039 Number of compositions of n with unique smallest part.

Original entry on oeis.org

1, 1, 3, 3, 8, 11, 20, 34, 59, 96, 167, 282, 475, 800, 1352, 2275, 3828, 6426, 10785, 18085, 30297, 50698, 84770, 141623, 236425, 394381, 657380, 1094975, 1822628, 3031843, 5040129, 8373594, 13903588, 23072567, 38267330, 63435438, 105103059, 174054820, 288105394
Offset: 1

Views

Author

Vladeta Jovovic, Apr 03 2005

Keywords

Examples

			a(5) = 8 because we have 5, 14, 41, 23, 32, 122, 212 and 221.
		

Crossrefs

Column k=1 of A238342.

Programs

  • Maple
    G:= sum(k*x^(2*k-1)/((1-x^k)*(1-x)^(k-1)), k=1..70): Gser:=series(G,x=0,44): seq(coeff(Gser,x^n),n=1..41); # Emeric Deutsch, Apr 13 2005
  • Mathematica
    nn=37;Drop[CoefficientList[Series[Sum[x^j/(1-x^(j+1)/(1-x))^2,{j,1,nn}],{x,0,nn}],x],1] (* Geoffrey Critzer, Mar 31 2014 *)
  • PARI
    a(n)=1+sum(k=2,(n+3)\2,k*sum(s=1,(n-1)\k,binomial(n-k*s-1,k-2))) (Alekseyev)

Formula

G.f.: Sum_{k>0} k * x^(2*k-1)/((1 - x^k) * (1 - x)^(k-1)) = (1 - x)^2 * Sum_{k>0} x^k/(1 - x - x^(k+1))^2.
a(n) = 1 + sum(k=2..[(n+3)/2], k * sum(s=1..[(n-1)/k], binomial(n-k*s-1, k-2) ) ). - Max Alekseyev, Apr 15 2005
a(n) ~ (2*sqrt(5)-4)/10 * n * ((1+sqrt(5))/2)^n. - Vaclav Kotesovec, May 02 2014
Equivalently, a(n) ~ n * phi^(n-3) / 5, where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Dec 07 2021

Extensions

More terms from Emeric Deutsch and Max Alekseyev, Apr 13 2005