A105060 Triangle read by rows in which the n-th row consists of the first n nonzero terms of A033312.
1, 1, 5, 1, 5, 23, 1, 5, 23, 119, 1, 5, 23, 119, 719, 1, 5, 23, 119, 719, 5039, 1, 5, 23, 119, 719, 5039, 40319, 1, 5, 23, 119, 719, 5039, 40319, 362879, 1, 5, 23, 119, 719, 5039, 40319, 362879, 3628799, 1, 5, 23, 119, 719, 5039, 40319, 362879, 3628799, 39916799
Offset: 1
Examples
Triangle begins as: 1; 1, 5; 1, 5, 23; 1, 5, 23, 119; 1, 5, 23, 119, 719; 1, 5, 23, 119, 719, 5039; 1, 5, 23, 119, 719, 5039, 40319;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Programs
-
Magma
function T(n,k) if k eq 1 then return 1; else return T(n,k-1) + k*Factorial(k); end if; end function; [T(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 13 2023
-
Mathematica
a[n_]:= a[n]= If[n==1, 1, a[n-1] + k!*n]; Table[a[k], {n,12}, {k,n}]//Flatten
-
SageMath
@CachedFunction def T(n,k): if (k==1): return 1 else: return T(n,k-1) + k*factorial(k) flatten([[T(n,k) for k in range(1,n+1)] for n in range(1,10)]) # G. C. Greubel, Mar 13 2023
Formula
From G. C. Greubel, Mar 13 2023: (Start)
T(n, k) = T(n,k-1) + k*k!, with T(n, 1) = 1.