A105070 T(n,k) = 2^k*binomial(n,2k+1), where 0 <= k <= floor((n-1)/2), n >= 1.
1, 2, 3, 2, 4, 8, 5, 20, 4, 6, 40, 24, 7, 70, 84, 8, 8, 112, 224, 64, 9, 168, 504, 288, 16, 10, 240, 1008, 960, 160, 11, 330, 1848, 2640, 880, 32, 12, 440, 3168, 6336, 3520, 384, 13, 572, 5148, 13728, 11440, 2496, 64, 14, 728, 8008, 27456, 32032, 11648, 896, 15, 910, 12012, 51480, 80080, 43680, 6720, 128
Offset: 1
Examples
Triangle begins: 1; 2; 3, 2; 4, 8; 5, 20, 4; 6, 40, 24; (2, -1/2, 1/2, 0, 0, ...) DELTA (0, 1, -1, 0, 0, ...) begins: 1; 2, 0; 3, 2, 0; 4, 8, 0, 0; 5, 20, 4, 0, 0; 6, 40, 24, 0, 0, 0. (1, 1, -1, 1, 0, 0, ...) DELTA (0, 0, 2, -2, 0, 0, ...) begins: 1; 1, 0; 2, 0, 0; 3, 2, 0, 0; 4, 8, 0, 0, 0; 5, 20, 4, 0, 0, 0; 6, 40, 24, 0, 0, 0, 0. - _Philippe Deléham_, Apr 07 2012
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
- Rui Duarte and António Guedes de Oliveira, A Famous Identity of Hajós in Terms of Sets, Journal of Integer Sequences, Vol. 17 (2014), #14.9.1.
- J. Ivie, Problem B-161, Fibonacci Quarterly, 8 (1970), 107-108.
Programs
-
Magma
[2^k*Binomial(n,2*k+1): k in [0..Floor((n-1)/2)], n in [1..15]]; // G. C. Greubel, Mar 15 2020
-
Maple
T:=(n,k)->binomial(n,2*k+1)*2^k:for n from 1 to 15 do seq(T(n,k),k=0..floor((n-1)/2)) od; # yields sequence in triangular form
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] v[n_, x_] := u[n - 1, x] + v[n - 1, x] Table[Factor[u[n, x]], {n, 1, z}] Table[Factor[v[n, x]], {n, 1, z}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A207536 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A105070 *) (* Clark Kimberling, Feb 18 2010 *) Table[2^k*Binomial[n, 2*k+1], {n, 15}, {k,0,Floor[(n-1)/2]}]//Flatten (* G. C. Greubel, Mar 15 2020 *)
-
Sage
[[2^k*binomial(n,2*k+1) for k in (0..floor((n-1)/2))] for n in (1..15)] # G. C. Greubel, Mar 15 2020
Formula
E.g.f.: exp(x)*sinh(x*sqrt(2*y))/sqrt(2*y), cf. A034867. - Vladeta Jovovic, Apr 06 2005
From Philippe Deléham, Apr 07 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-x+x^2-y*x^2)/(1-2*x+x^2-2*y*x^2).
T(n,k) = 2*T(n-1,k) - T(n-2,k) + 2*T(n-2,k-1), T(0,0) = T(1,0) = 1, T(1,1) = T(2,1) = T(2,2) = 0, T(2,0) = 2 and T(n,k) = 0 if k<0 or if k>n. (End)
Comments