cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A105126 Primes of the form 16n+9.

Original entry on oeis.org

41, 73, 89, 137, 233, 281, 313, 409, 457, 521, 569, 601, 617, 761, 809, 857, 937, 953, 1033, 1049, 1097, 1129, 1193, 1289, 1321, 1433, 1481, 1609, 1657, 1721, 1753, 1801, 1913, 1993, 2089, 2137, 2153, 2281, 2297, 2377, 2393, 2441, 2473, 2521, 2617, 2633, 2713
Offset: 1

Views

Author

N. J. A. Sloane, based on correspondence from Marco Matosic, Apr 11 2005

Keywords

Comments

A prime of the form 16n+9 is represented by exactly one of x^2 + 32y^2 and x^2 + 64y^2 (see Kaplanski link). - Michel Marcus, Dec 23 2012

Crossrefs

Programs

  • Maple
    M:=500; f:=proc(n) local t1,t2; t1:=[]; for k from 0 to M do t2:=2^n*k+2^(n-1)+1; if isprime(t2) then t1:=[op(t1),t2]; fi; od; t1; end; f(4);
  • Mathematica
    lst={};Do[p=16*n+9;If[PrimeQ[p],AppendTo[lst,p]],{n,0,3*5!,1}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 27 2009 *)
  • PARI
    select(n->n%16==9, primes(500)) \\ Charles R Greathouse IV, Apr 29 2015

A339900 Lexicographically earliest permutation of odd primes such that A007814(a(n)-1) = 1+A007814(n), where A007814 gives the 2-adic valuation of n.

Original entry on oeis.org

3, 5, 7, 41, 11, 13, 19, 17, 23, 29, 31, 73, 43, 37, 47, 97, 59, 53, 67, 89, 71, 61, 79, 113, 83, 101, 103, 137, 107, 109, 127, 193, 131, 149, 139, 233, 151, 157, 163, 241, 167, 173, 179, 281, 191, 181, 199, 353, 211, 197, 223, 313, 227, 229, 239, 337, 251, 269, 263, 409, 271, 277, 283, 641, 307, 293, 311, 457, 331
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2020

Keywords

Crossrefs

Cf. A002145 (odd bisection), A007521 (quadrisection starting from 5), A105126, A105127, A105128, A105129, A105130, A105131, A105132.
Cf. also A108546, A111745.

Programs

  • PARI
    A339900(n) = { my(lev=1+valuation(n,2), k=(1+(n>>(lev-1)))/2); forprime(p=3,,if(valuation(p-1,2)==lev, k--; if(!k, return(p)))); };
Showing 1-2 of 2 results.