cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A301619 Primes congruent to 65 (mod 192).

Original entry on oeis.org

257, 449, 641, 1217, 1409, 1601, 2753, 3137, 3329, 4289, 4481, 4673, 5441, 6977, 7937, 8513, 9281, 9473, 9857, 10433, 11393, 11777, 11969, 12161, 13121, 13313, 13697, 14081, 14657, 15233, 15809, 16001, 16193, 17729, 17921, 19073, 19457, 19841, 21377, 21569
Offset: 1

Views

Author

Felix Fröhlich, Mar 24 2018

Keywords

Comments

In other words, primes of the form 192*k+65 for k > 0.

Crossrefs

Subsequence of A002144 (primes of form 4*k+65) and A007519 (primes of form 8*k+65).
Cf. primes congruent to 65 (mod k): A142068 (k=66), A142137 (k=74), A142221 (k=82), A142271 (k=86), A142369 (k=94), A142427 (k=98), A142485 (k=102), A142542 (k=106), A142670 (k=114), A142733 (k=118), A142802 (k=122), A142890 (k=126), A105129 (k=128).

Programs

  • Magma
    [p: p in PrimesUpTo(25000) | p mod 192 in {65}]; // Vincenzo Librandi, Jan 04 2020
  • Mathematica
    Select[Prime[Range[2500]], MemberQ[{65}, Mod[#, 192]] &] (* Vincenzo Librandi, Jan 04 2020 *)
  • PARI
    forprime(p=1, 5e4, if(Mod(p, 192)==65, print1(p, ", ")))
    

A339900 Lexicographically earliest permutation of odd primes such that A007814(a(n)-1) = 1+A007814(n), where A007814 gives the 2-adic valuation of n.

Original entry on oeis.org

3, 5, 7, 41, 11, 13, 19, 17, 23, 29, 31, 73, 43, 37, 47, 97, 59, 53, 67, 89, 71, 61, 79, 113, 83, 101, 103, 137, 107, 109, 127, 193, 131, 149, 139, 233, 151, 157, 163, 241, 167, 173, 179, 281, 191, 181, 199, 353, 211, 197, 223, 313, 227, 229, 239, 337, 251, 269, 263, 409, 271, 277, 283, 641, 307, 293, 311, 457, 331
Offset: 1

Views

Author

Antti Karttunen, Dec 25 2020

Keywords

Crossrefs

Cf. A002145 (odd bisection), A007521 (quadrisection starting from 5), A105126, A105127, A105128, A105129, A105130, A105131, A105132.
Cf. also A108546, A111745.

Programs

  • PARI
    A339900(n) = { my(lev=1+valuation(n,2), k=(1+(n>>(lev-1)))/2); forprime(p=3,,if(valuation(p-1,2)==lev, k--; if(!k, return(p)))); };
Showing 1-2 of 2 results.