cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A105202 Irregular triangle read by rows: row n gives the word f(f(f(...(1)))) [with n applications of f], where f is the morphism 1->{1,2,1}, 2->{2,3,2}, 3->{3,1,3}.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 1, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 1, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 1, 3, 2, 3, 2, 3, 1, 3, 1, 2, 1, 3, 1, 3, 2, 3, 2, 3, 1, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3
Offset: 0

Views

Author

Roger L. Bagula, Apr 09 2005

Keywords

Comments

Row n contains 3^n symbols.

Examples

			From _Antti Karttunen_, Aug 12 2017: (Start)
The rows 0 .. 3 of this irregular triangle:
  1
  1;2;1
  1 2 1;2 3 2;1 2 1;
  1 2 1 2 3 2 1 2 1;2 3 2 3 1 3 2 3 2;1 2 1 2 3 2 1 2 1
(End)
		

Crossrefs

Each row is a prefix of A105203.

Programs

  • Mathematica
    f[n_] := Nest[ Flatten[ # /. {1 -> {1, 2, 1}, 2 -> {2, 3, 2}, 3 -> {3, 1, 3}}] &, {1}, n]; Flatten[ Table[ f[n], {n, 0, 4}]] (* Robert G. Wilson v, Apr 12 2005 *)

Formula

Let r = A062153(1+(2*n)) [index of the row], let c = n - A003462(r) [index of the column], then a(n) = 1 + (a(A003462(r-1)+floor(c/3)) mod 3) if n ≡ 2 mod 3, otherwise a(n) = a(A003462(r-1)+floor(c/3)). - Antti Karttunen, Aug 12 2017

Extensions

More terms from Robert G. Wilson v, Apr 12 2005

A105203 Trajectory of 1 under the morphism f: 1->{1,2,1}, 2->{2,3,2}, 3->{3,1,3}.

Original entry on oeis.org

1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 1, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 1, 3, 2, 3, 2, 3, 1, 3, 1, 2, 1, 3, 1, 3, 2, 3, 2, 3, 1, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 1, 3, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 3, 1, 3, 2, 3, 2, 3, 1, 3, 1, 2, 1, 3, 1, 3, 2, 3, 2, 3, 1, 3
Offset: 0

Views

Author

Roger L. Bagula, Apr 09 2005

Keywords

Crossrefs

Programs

Formula

a(0) = 1; and for n > 1, a(n) = A105202(n+A003462(1+A062153(n))). - Antti Karttunen, Aug 12 2017

Extensions

More terms from Robert G. Wilson v, Apr 12 2005
Showing 1-2 of 2 results.