A105184 Primes that can be written as concatenation of two primes in decimal representation.
23, 37, 53, 73, 113, 137, 173, 193, 197, 211, 223, 229, 233, 241, 271, 283, 293, 311, 313, 317, 331, 337, 347, 353, 359, 367, 373, 379, 383, 389, 397, 433, 523, 541, 547, 571, 593, 613, 617, 673, 677, 719, 733, 743, 761, 773, 797, 977, 1013, 1033, 1093
Offset: 1
Examples
193 is in the sequence because it is the concatenation of the primes 19 and 3. 197 is in the sequence because it is the concatenation of the primes 19 and 7. 199 is not in the sequence because there is no way to break it into two substrings such that both are prime: neither 1 nor 99 is prime, and 19 is prime but 9 is not.
Links
- T. D. Noe, Table of n, a(n) for n=1..10000
Programs
-
Mathematica
searchMax = 10^4; Union[Reap[Do[p = Prime[i]; q = Prime[j]; n = FromDigits[Join[IntegerDigits[p], IntegerDigits[q]]]; If[PrimeQ[n], Sow[n]], {i, PrimePi[searchMax/10]}, {j, 2, PrimePi[searchMax/10^Ceiling[Log[10, Prime[i]]]]}]][[2, 1]]] (* T. D. Noe, Oct 04 2010 *) Select[Prime@Range@1000, MatchQ[IntegerDigits@#, {x__, y__} /; PrimeQ@FromDigits@{x} && First@{y} != 0 && PrimeQ@FromDigits@{y}] &] (* Hans Rudolf Widmer, Nov 30 2024 *)
-
Python
from sympy import isprime def ok(n): if not isprime(n): return False s = str(n) return any(s[i]!="0" and isprime(int(s[:i])) and isprime(int(s[i:])) for i in range(1, len(s))) print([k for k in range(1100) if ok(k)]) # Michael S. Branicky, Sep 01 2024
Extensions
Corrected and extended by Ray Chandler, Apr 16 2005
Edited by N. J. A. Sloane, May 03 2007
Edited by N. J. A. Sloane, to remove erroneous b-file, comments and Mma program, Oct 04 2010
Comments