A105199 Decimal expansion of arctan(2).
1, 1, 0, 7, 1, 4, 8, 7, 1, 7, 7, 9, 4, 0, 9, 0, 5, 0, 3, 0, 1, 7, 0, 6, 5, 4, 6, 0, 1, 7, 8, 5, 3, 7, 0, 4, 0, 0, 7, 0, 0, 4, 7, 6, 4, 5, 4, 0, 1, 4, 3, 2, 6, 4, 6, 6, 7, 6, 5, 3, 9, 2, 0, 7, 4, 3, 3, 7, 1, 0, 3, 3, 8, 9, 7, 7, 3, 6, 2, 7, 9, 4, 0, 1, 3, 4, 1, 7, 1, 2, 8, 6, 8, 6, 1, 7, 0, 6, 4, 1, 4, 3, 4, 5, 4
Offset: 1
Examples
1.107148717794090503017065460...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- G. Boros and V. Moll, Sums of arctangents and some formulas of Ramanujan, Scientia Ser. A Math. Sci 11 (2005) 13-24 [MR2196063] eq. (2.11). [From _R. J. Mathar_, Apr 12 2010]
- J. H. Conway, C. Radin, L. and Sadun, On Angles Whose Squared Trigonometric Functions Are Rational. Discr. Computat. Geom., Vol. 22, (1999), pp. 321-332.
- Stanley Rabinowitz, Problem 3297, Crux Mathematicorum, Vol. 33, No. 8 (2007), pp. 486 and 488; Solution to Problem 3297 by D. J. Smeenk, ibid., Vol. 34, No. 8 (2008), pp. 499-500.
- Eric Weisstein's World of Mathematics, Dehn Invariant.
- Eric Weisstein's World of Mathematics, Golden Rhombus.
- Index entries for transcendental numbers
Crossrefs
Programs
-
Mathematica
RealDigits[ArcTan[2], 10, 105][[1]] (* Indranil Ghosh, Apr 10 2017 *)
-
PARI
default(realprecision, 120); atan(2) \\ Rick L. Shepherd, Apr 10 2017
Formula
Equals Sum_{k>=1} arctan(8k/(4k^4+5)). [Boros and Moll, from R. J. Mathar, Apr 12 2010]
Equals 2*A195693. - Rick L. Shepherd, Apr 10 2017
Equals arcsin(2/sqrt(5)) = arccos(1/sqrt(5)). - Amiram Eldar, Aug 04 2022
Equals 2 - log(5) + (Integral_{x=0..2} log(1 + x^2) dx)/2. - Vaclav Kotesovec, Oct 06 2023
Extensions
Offset corrected by R. J. Mathar, Apr 12 2010
Comments