cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105220 Trajectory of 1 under the morphism 1->{1,2,1}, 2->{2,2,2}.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 0

Views

Author

Roger L. Bagula, Apr 29 2005

Keywords

Comments

Dekking substitution for the Cantor set: characteristic polynomial = x^2 - 5*x + 6 of matrix [2, 0; 1, 3].
This substitution is useful for computing the devil's staircase by bb=aa/. 1->1/3/. 2->0 /. 3->0; ListPlot[FoldList[Plus, 0, bb], PlotRange -> All, PlotJoined -> True, Axes ->False];
The Wikipedia article on L-system Example 3 is "Cantor dust" given by the axiom: A and rules: A -> ABA, B -> BBB. This is isomorphic to the system given in the sequence name. - Michael Somos, Jan 12 2015

Crossrefs

Programs

  • Mathematica
    Flatten[ Nest[ Flatten[ # /. {1 -> {1, 2, 1}, 2 -> {2, 2, 2}} &], {1}, 5]]
  • PARI
    A088917(n) = { while(n, if(n%3==1, return(0), n\=3)); (1); }; \\ Originally from A005823
    A105220(n) = (2-A088917(n)); \\ Antti Karttunen, Aug 23 2019

Formula

a(n) = 2 - A088917(n) = 1 + A316829(n). - Antti Karttunen, Aug 24 2019
a(n) = 2 if the ternary expansion of n contains the digit 1, otherwise a(n) = 1. - Joerg Arndt, Aug 24 2019