A105221 a(n) is the sum of n's distinct prime factors below n.
0, 0, 0, 2, 0, 5, 0, 2, 3, 7, 0, 5, 0, 9, 8, 2, 0, 5, 0, 7, 10, 13, 0, 5, 5, 15, 3, 9, 0, 10, 0, 2, 14, 19, 12, 5, 0, 21, 16, 7, 0, 12, 0, 13, 8, 25, 0, 5, 7, 7, 20, 15, 0, 5, 16, 9, 22, 31, 0, 10, 0, 33, 10, 2, 18, 16, 0, 19, 26, 14, 0, 5, 0, 39, 8, 21, 18, 18, 0, 7, 3, 43, 0, 12, 22, 45
Offset: 1
Examples
a(12)=5 because 12's distinct prime factors 2 and 3 sum to 5.
Links
- T. D. Noe, Table of n, a(n) for n=1..1000
Programs
-
Haskell
a105221 n = a008472 n - n * fromIntegral (a010051 n) -- Reinhard Zumkeller, Apr 05 2013
-
Maple
f:= n -> convert(numtheory:-factorset(n) minus {n}, `+`): map(f, [$1..100]); # Robert Israel, Sep 18 2023
-
Mathematica
Table[Total@Select[Join@@Union@*Table@@@FactorInteger@k,#
Giorgos Kalogeropoulos, Nov 21 2021 *) -
PARI
a(n) = my(f=factor(n)); sum(k=1, #f~, if (f[k,1]
Michel Marcus, Nov 21 2021 -
Python
from sympy import primefactors def A105221(n): return sum(p for p in primefactors(n) if p < n) # Chai Wah Wu, Sep 18 2023
Formula
G.f.: Sum_{k>=1} prime(k) * x^(2*prime(k)) / (1 - x^prime(k)). - Ilya Gutkovskiy, Apr 13 2021
Extensions
Edited by Don Reble, Nov 17 2005