A105236 a(n+5) = (a(n+4)*a(n+1) + 2*a(n+3)*a(n+2))/a(n).
1, 1, 1, 1, 1, 3, 5, 11, 41, 233, 689, 5337, 49081, 458299, 3603685, 93208147, 1476087601, 27470407569, 816413467841, 43620306030449, 1172020019840081, 70063780891581107, 5804382690927311525, 511286588817798535899
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..147
- A. N. W. Hone, Sigma function solution of the initial value problem for Somos 5 sequences, arXiv:math/0501554 [math.NT], 2005-2006.
- A. N. W. Hone, Bilinear recurrences and addition formulas for hyperelliptic sigma functions, arXiv:math/0501162 [math.NT], 2005.
- A. N. W. Hone, Elliptic curves and quadratic recurrence sequences, Bull. Lond. Math. Soc. 37 (2005) 161-171.
- A. J. van der Poorten, Elliptic curves and continued fractions, J. Int. Sequences, Volume 8, no. 2 (2005), article 05.2.5.
Programs
-
Magma
[n le 5 select 1 else (Self(n-1)*Self(n-4) +2*Self(n-2)*Self(n-3))/Self(n-5): n in [1..41]]; // G. C. Greubel, Nov 26 2022
-
Mathematica
RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==a[4]==1,a[n]==(2 a[-3+n] a[-2+n]+a[-4+n] a[-1+n])/a[-5+n]},a,{n,30}] (* Harvey P. Dale, Sep 15 2013 *)
-
SageMath
@CachedFunction def a(n): # a = A105236 if (n<5): return 1 else: return (a(n-1)*a(n-4) +2*a(n-2)*a(n-3))/a(n-5) [a(n) for n in range(41)] # G. C. Greubel, Nov 26 2022
Comments