cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105254 a(n) = binomial(n+7,n)*binomial(n+11,n).

Original entry on oeis.org

1, 96, 2808, 43680, 450450, 3459456, 21237216, 109219968, 486370170, 1921462400, 6859620768, 22449667968, 68128506264, 193501082880, 518306472000, 1317650231040, 3196331224515, 7432299594720, 16630917303000, 35933837940000, 75191555889450, 152770145299200
Offset: 0

Views

Author

Zerinvary Lajos, Apr 14 2005

Keywords

Examples

			a(0): C(0+7,0)*C(0+11,0) = C(7,0)*C(11,0) = 1*1 = 1;
a(8): C(8+7,8)*C(8+11,8) = C(15,8)*(19,8) = 6435*75582 = 486370170.
		

Crossrefs

Cf. A062264.

Programs

  • Magma
    [Binomial(n+7,n)*Binomial(n+11,n): n in [0..30]]; // Vincenzo Librandi, Jul 31 2015
    
  • Mathematica
    f[n_] := Binomial[n + 7, n]Binomial[n + 11, n]; Table[ f[n], {n, 0, 19}] (* Robert G. Wilson v, Apr 20 2005 *)
  • SageMath
    def A105254(n): return binomial(n+7,n)*binomial(n+11,n)
    print([A105254(n) for n in range(31)]) # G. C. Greubel, Mar 04 2025

Formula

G.f.: (1 + 77*x + 1155*x^2 + 5775*x^3 + 11550*x^4 + 9702*x^5 + 3234*x^6 + 330*x^7)/(1-x)^19. - Colin Barker, Jan 21 2013
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=0} 1/a(n) = 308308*Pi^2/3 - 16431524791/16200.
Sum_{n>=0} (-1)^n/a(n) = 1232*Pi^2/3 + 360448*log(2)/45 - 108911693/11340. (End)

Extensions

More terms from Robert G. Wilson v, Apr 20 2005
More terms from Colin Barker, Jan 21 2013