cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226444 Number A(n,k) of tilings of a k X n rectangle using 1 X 1 squares and L-tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 6, 5, 1, 1, 1, 1, 8, 13, 13, 8, 1, 1, 1, 1, 13, 28, 42, 28, 13, 1, 1, 1, 1, 21, 60, 126, 126, 60, 21, 1, 1, 1, 1, 34, 129, 387, 524, 387, 129, 34, 1, 1, 1, 1, 55, 277, 1180, 2229, 2229, 1180, 277, 55, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2013

Keywords

Comments

An L-tile is a 2 X 2 square with the upper right 1 X 1 subsquare removed and no rotations are allowed.

Examples

			A(3,3) = 6:
  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.
  |_|_|_|  | |_|_|  |_|_|_|  |_| |_|  |_|_|_|  |_| |_|
  |_|_|_|  |___|_|  | |_|_|  |_|___|  |_| |_|  | |___|
  |_|_|_|  |_|_|_|  |___|_|  |_|_|_|  |_|___|  |___|_|.
Square array A(n,k) begins:
  1, 1,  1,   1,    1,     1,      1,       1,        1, ...
  1, 1,  1,   1,    1,     1,      1,       1,        1, ...
  1, 1,  2,   3,    5,     8,     13,      21,       34, ...
  1, 1,  3,   6,   13,    28,     60,     129,      277, ...
  1, 1,  5,  13,   42,   126,    387,    1180,     3606, ...
  1, 1,  8,  28,  126,   524,   2229,    9425,    39905, ...
  1, 1, 13,  60,  387,  2229,  13322,   78661,   466288, ...
  1, 1, 21, 129, 1180,  9425,  78661,  647252,  5350080, ...
  1, 1, 34, 277, 3606, 39905, 466288, 5350080, 61758332, ...
		

Crossrefs

Columns (or rows) k=0+1,2-10 give: A000012, A000045(n+1), A002478, A105262, A219737(n-1) for n>2, A219738 (n-1) for n>2, A219739(n-1) for n>1, A219740(n-1) for n>2, A226543, A226544.
Main diagonal gives A066864(n-1).
See A219741 for an array with very similar entries. - N. J. A. Sloane, Aug 22 2013
Cf. A322494.

Programs

  • Maple
    b:= proc(n, l) option remember; local k, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; b(n, subsop(k=1, l))+
            `if`(k b(max(n, k), [0$min(n, k)]):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
    [Zeilberger gives Maple code to find generating functions for the columns - see links in A228285. - N. J. A. Sloane, Aug 22 2013]
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{k, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 2}]], 0] ] ]; a[n_, k_] := b[Max[n, k], Array[0&, Min[n, k]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)

Formula

The k-th column satisfies a recurrence of order Fibonacci(k+1) [Zeilberger] - see links in A228285. - N. J. A. Sloane, Aug 22 2013

A219741 T(n,k) = Unmatched value maps: number of nXk binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 nXk array.

Original entry on oeis.org

1, 2, 2, 4, 6, 4, 7, 13, 13, 7, 12, 28, 42, 28, 12, 21, 60, 126, 126, 60, 21, 37, 129, 387, 524, 387, 129, 37, 65, 277, 1180, 2229, 2229, 1180, 277, 65, 114, 595, 3606, 9425, 13322, 9425, 3606, 595, 114, 200, 1278, 11012, 39905, 78661, 78661, 39905, 11012, 1278, 200
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2012

Keywords

Comments

Table starts
...1.....2......4........7.........12...........21.............37
...2.....6.....13.......28.........60..........129............277
...4....13.....42......126........387.........1180...........3606
...7....28....126......524.......2229.........9425..........39905
..12....60....387.....2229......13322........78661.........466288
..21...129...1180.....9425......78661.......647252........5350080
..37...277...3606....39905.....466288......5350080.......61758332
..65...595..11012...168925....2760690.....44159095......711479843
.114..1278..33636...715072...16350693....364647622.....8201909757
.200..2745.102733..3027049...96830726...3010723330....94531063074
.351..5896.313781.12813931..573456240..24858935864..1089590912023
.616.12664.958384.54243509.3396136349.205253857220.12558669019786

Examples

			Some solutions for n=3 k=4
..0..0..0..0....1..0..0..1....0..0..1..0....0..0..1..0....0..0..0..1
..0..1..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..1..0..0
..0..0..0..0....0..1..0..1....0..0..0..1....1..0..0..1....0..0..0..0
		

Crossrefs

Column 1 is A005251(n+2).
Column 2 is A002478(n+1).
Column 3 is A105262(n+1) for n>1.
Main diagonal is A066864.
See A226444 for an array with very similar entries. - N. J. A. Sloane, Aug 22 2013

Formula

Zeilberger's Maple code (see links in A228285) would presumably give recurrences for the columns of this array. - N. J. A. Sloane, Aug 22 2013
Showing 1-2 of 2 results.