cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A066864 Number of binary arrangements without adjacent 1's on n X n rhombic hexagonal grid.

Original entry on oeis.org

1, 2, 6, 42, 524, 13322, 647252, 61758332, 11435477118, 4129523869606, 2902264461628298, 3973109800760143708, 10590895512774862686570, 54979738656662942307796576, 555797909644630436677137498230, 10941698340065066230952215658836402, 419471520990343359533179780148504998680
Offset: 0

Views

Author

R. H. Hardin, Jan 25 2002

Keywords

Comments

Also the number of tilings of an (n+1) X (n+1) square using 1 X 1 squares and L-tiles. An L-tile is a 2 X 2 square with the upper right 1 X 1 subsquare removed and no rotations are allowed. a(2) = 6:
|||_| | ||| |||_| || || |||_| || ||
|||_| |_|_| | ||| ||__| || || | |_|
|||_| |||_| |_|_| |||_| ||__| |_|_| - Alois P. Heinz, Jun 06 2013

Examples

			Neighbors for n=4:
  o--o--o--o
  | /| /| /|
  |/ |/ |/ |
  o--o--o--o
  | /| /| /|
  |/ |/ |/ |
  o--o--o--o
  | /| /| /|
  |/ |/ |/ |
  o--o--o--o
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
  • J. Katzenelson and R. P. Kurshan, S/R: A Language for Specifying Protocols and Other Coordinating Processes, pp. 286-292 in Proc. IEEE Conf. Comput. Comm., 1986.

Crossrefs

Main diagonal of A219741 and A226444.

Programs

  • Maple
    a:= proc(n) option remember; local b; b:=
          proc(n, l) option remember; local k;
            if n<2 then 1
          elif min(l[])>0 then b(n-1, map(h->h-1, l))
          else for k while l[k]>0 do od; b(n, subsop(k=1, l))+
               `if`(n>1 and kAlois P. Heinz, Aug 26 2013
  • Mathematica
    $RecursionLimit = 1000; a[n0_] := a[n0] = Module[{b}, b[n_, l_List] := b[n, l] = Module[{k}, Which[n<2, 1, Min[l]>0, b[n-1, l-1], True, For[k = 1, l[[k]] > 0, k++]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 1}]], 0]]];  b[n0+1, Array[0&, n0+1]]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)

Formula

Limit_{n->oo} a(n)^(1/n^2) = 1.395485972... (see A085851).

Extensions

a(12)-a(21) from Vaclav Kotesovec, May 01 2012
a(0) and a(22) from Alois P. Heinz, Aug 26 2013
a(23) from Alois P. Heinz, Aug 28 2013
a(24) from Vaclav Kotesovec, Sep 19 2014
a(25) from Alois P. Heinz, Dec 03 2014
a(26)-a(28) from Vaclav Kotesovec, Aug 13 2016

A226444 Number A(n,k) of tilings of a k X n rectangle using 1 X 1 squares and L-tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 6, 5, 1, 1, 1, 1, 8, 13, 13, 8, 1, 1, 1, 1, 13, 28, 42, 28, 13, 1, 1, 1, 1, 21, 60, 126, 126, 60, 21, 1, 1, 1, 1, 34, 129, 387, 524, 387, 129, 34, 1, 1, 1, 1, 55, 277, 1180, 2229, 2229, 1180, 277, 55, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2013

Keywords

Comments

An L-tile is a 2 X 2 square with the upper right 1 X 1 subsquare removed and no rotations are allowed.

Examples

			A(3,3) = 6:
  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.
  |_|_|_|  | |_|_|  |_|_|_|  |_| |_|  |_|_|_|  |_| |_|
  |_|_|_|  |___|_|  | |_|_|  |_|___|  |_| |_|  | |___|
  |_|_|_|  |_|_|_|  |___|_|  |_|_|_|  |_|___|  |___|_|.
Square array A(n,k) begins:
  1, 1,  1,   1,    1,     1,      1,       1,        1, ...
  1, 1,  1,   1,    1,     1,      1,       1,        1, ...
  1, 1,  2,   3,    5,     8,     13,      21,       34, ...
  1, 1,  3,   6,   13,    28,     60,     129,      277, ...
  1, 1,  5,  13,   42,   126,    387,    1180,     3606, ...
  1, 1,  8,  28,  126,   524,   2229,    9425,    39905, ...
  1, 1, 13,  60,  387,  2229,  13322,   78661,   466288, ...
  1, 1, 21, 129, 1180,  9425,  78661,  647252,  5350080, ...
  1, 1, 34, 277, 3606, 39905, 466288, 5350080, 61758332, ...
		

Crossrefs

Columns (or rows) k=0+1,2-10 give: A000012, A000045(n+1), A002478, A105262, A219737(n-1) for n>2, A219738 (n-1) for n>2, A219739(n-1) for n>1, A219740(n-1) for n>2, A226543, A226544.
Main diagonal gives A066864(n-1).
See A219741 for an array with very similar entries. - N. J. A. Sloane, Aug 22 2013
Cf. A322494.

Programs

  • Maple
    b:= proc(n, l) option remember; local k, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; b(n, subsop(k=1, l))+
            `if`(k b(max(n, k), [0$min(n, k)]):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
    [Zeilberger gives Maple code to find generating functions for the columns - see links in A228285. - N. J. A. Sloane, Aug 22 2013]
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{k, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 2}]], 0] ] ]; a[n_, k_] := b[Max[n, k], Array[0&, Min[n, k]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)

Formula

The k-th column satisfies a recurrence of order Fibonacci(k+1) [Zeilberger] - see links in A228285. - N. J. A. Sloane, Aug 22 2013

A219737 Unmatched value maps: number of n X 4 binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 n X 4 array.

Original entry on oeis.org

7, 28, 126, 524, 2229, 9425, 39905, 168925, 715072, 3027049, 12813931, 54243509, 229621433, 972024617, 4114736810, 17418344167, 73734658344, 312130693269, 1321299533915, 5593273893746, 23677229915913, 100229530526756
Offset: 1

Views

Author

R. H. Hardin, Nov 26 2012

Keywords

Comments

Column 4 of A219741.

Examples

			Some solutions for n=3:
..0..1..0..1....0..0..1..0....0..0..0..1....1..0..1..0....1..0..0..0
..0..0..0..0....1..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0
..1..0..0..0....0..1..0..1....0..1..0..0....0..1..0..1....1..0..0..0
		

Crossrefs

Cf. A219741.

Formula

Empirical: a(n) = a(n-1) + 10*a(n-2) + 15*a(n-3) + 4*a(n-4) - 6*a(n-5) - a(n-6) + 3*a(n-7) - a(n-8) for n>9.
Zeilberger's Maple code (see links in A228285) would give a proof that this recurrence is correct. - N. J. A. Sloane, Aug 22 2013
G.f.: x*(1 + x)*(7 + 14*x + 14*x^2 - x^3 - 2*x^4 - 2*x^5 + 3*x^6 - x^7) / (1 - x - 10*x^2 - 15*x^3 - 4*x^4 + 6*x^5 + x^6 - 3*x^7 + x^8). - Colin Barker, Mar 12 2018

A219738 Unmatched value maps: number of nX5 binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 nX5 array.

Original entry on oeis.org

12, 60, 387, 2229, 13322, 78661, 466288, 2760690, 16350693, 96830726, 573456240, 3396136349, 20112704280, 119112043349, 705408898268, 4177593432263, 24740667779362, 146519915909536, 867724589734469, 5138864287202152
Offset: 1

Views

Author

R. H. Hardin Nov 26 2012

Keywords

Comments

Column 5 of A219741

Examples

			Some solutions for n=3
..0..1..0..0..0....0..1..0..0..0....1..0..1..0..0....0..0..1..0..0
..0..0..1..0..0....0..0..0..0..1....0..0..0..0..0....0..0..0..0..1
..1..0..0..1..0....0..1..0..0..0....1..0..1..0..0....0..1..0..0..0
		

Formula

Empirical: a(n) = a(n-1) +21*a(n-2) +48*a(n-3) +14*a(n-4) -69*a(n-5) -38*a(n-6) +68*a(n-7) +13*a(n-8) -57*a(n-9) +37*a(n-10) -8*a(n-11) -2*a(n-12) +a(n-13) for n>14
Zeilberger's Maple code (see links in A228285) would give a proof that this recurrence is correct. - N. J. A. Sloane, Aug 22 2013

A219739 Unmatched value maps: number of nX6 binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 nX6 array.

Original entry on oeis.org

21, 129, 1180, 9425, 78661, 647252, 5350080, 44159095, 364647622, 3010723330, 24858935864, 205253857220, 1694729679245, 13992960979394, 115536377026413, 953955009802438, 7876568121973188, 65034854910941849, 536976546612691621
Offset: 1

Views

Author

R. H. Hardin Nov 26 2012

Keywords

Comments

Column 6 of A219741

Examples

			Some solutions for n=3
..1..0..1..0..1..0....0..0..1..0..0..0....0..0..0..0..0..0....0..0..1..0..0..1
..0..0..0..0..0..0....1..0..0..1..0..1....0..1..0..0..0..1....0..0..0..0..0..0
..1..0..0..1..0..0....0..0..0..0..0..0....0..0..0..1..0..0....0..1..0..1..0..1
		

Formula

Zeilberger's Maple code (see links in A228285) would give a recurrence for this sequence. - N. J. A. Sloane, Aug 22 2013

A219740 Unmatched value maps: number of nX7 binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 nX7 array.

Original entry on oeis.org

37, 277, 3606, 39905, 466288, 5350080, 61758332, 711479843, 8201909757, 94531063074, 1089590912023, 12558669019786, 144752526242487, 1668430514943073, 19230483410164823, 221652312986931867
Offset: 1

Views

Author

R. H. Hardin Nov 26 2012

Keywords

Comments

Column 7 of A219741

Examples

			Some solutions for n=3
..0..0..1..0..0..0..1....1..0..0..0..0..0..1....0..0..1..0..0..1..0
..0..0..0..0..0..0..0....0..1..0..0..1..0..0....0..0..0..0..0..0..0
..1..0..1..0..0..0..1....0..0..0..0..0..1..0....0..1..0..1..0..0..0
		

Formula

Zeilberger's Maple code (see links in A228285) would give a recurrence for this sequence. - N. J. A. Sloane, Aug 22 2013
Showing 1-6 of 6 results.