A228285
T(n,k) = Number of n X k binary arrays with top left value 1 and no two ones adjacent horizontally, vertically or nw-se diagonally.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 3, 3, 3, 5, 6, 13, 6, 5, 8, 13, 35, 35, 13, 8, 13, 28, 112, 133, 112, 28, 13, 21, 60, 337, 587, 587, 337, 60, 21, 34, 129, 1034, 2448, 3631, 2448, 1034, 129, 34, 55, 277, 3154, 10414, 21166, 21166, 10414, 3154, 277, 55, 89, 595, 9637, 44024, 126119
Offset: 1
Table starts
1 1 2 3 5 8 13 21 34
1 1 3 6 13 28 60 129 277
2 3 13 35 112 337 1034 3154 9637
3 6 35 133 587 2448 10414 44024 186414
5 13 112 587 3631 21166 126119 745178 4416695
8 28 337 2448 21166 172082 1428523 11771298 97268701
13 60 1034 10414 126119 1428523 16566199 190540884 2197847780
21 129 3154 44024 745178 11771298 190540884 3057290265 49208639399
34 277 9637 186414 4416695 97268701 2197847780 49208639399 1105411581741
Some solutions for n=4, k=4:
1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 0 0
For the main diagonal (n X n matrices) see
A228277.
If the requirement that the top corner is 1 is omitted we get
A226444.
If the "nw-se" condition in the definition is changed to "ne-sw", we get
A228476-
A228482.
Minor corrections and further edits by
M. F. Hasler, Apr 28 2014
A066864
Number of binary arrangements without adjacent 1's on n X n rhombic hexagonal grid.
Original entry on oeis.org
1, 2, 6, 42, 524, 13322, 647252, 61758332, 11435477118, 4129523869606, 2902264461628298, 3973109800760143708, 10590895512774862686570, 54979738656662942307796576, 555797909644630436677137498230, 10941698340065066230952215658836402, 419471520990343359533179780148504998680
Offset: 0
Neighbors for n=4:
o--o--o--o
| /| /| /|
|/ |/ |/ |
o--o--o--o
| /| /| /|
|/ |/ |/ |
o--o--o--o
| /| /| /|
|/ |/ |/ |
o--o--o--o
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 342-349.
- J. Katzenelson and R. P. Kurshan, S/R: A Language for Specifying Protocols and Other Coordinating Processes, pp. 286-292 in Proc. IEEE Conf. Comput. Comm., 1986.
-
a:= proc(n) option remember; local b; b:=
proc(n, l) option remember; local k;
if n<2 then 1
elif min(l[])>0 then b(n-1, map(h->h-1, l))
else for k while l[k]>0 do od; b(n, subsop(k=1, l))+
`if`(n>1 and kAlois P. Heinz, Aug 26 2013
-
$RecursionLimit = 1000; a[n0_] := a[n0] = Module[{b}, b[n_, l_List] := b[n, l] = Module[{k}, Which[n<2, 1, Min[l]>0, b[n-1, l-1], True, For[k = 1, l[[k]] > 0, k++]; b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 1}]], 0]]]; b[n0+1, Array[0&, n0+1]]]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Feb 24 2015, after Alois P. Heinz *)
A322494
Number A(n,k) of tilings of a k X n rectangle using V (2m+1)-ominoes (m >= 0) in standard orientation; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 8, 5, 1, 1, 1, 1, 8, 18, 18, 8, 1, 1, 1, 1, 13, 44, 68, 44, 13, 1, 1, 1, 1, 21, 107, 233, 233, 107, 21, 1, 1, 1, 1, 34, 257, 838, 1262, 838, 257, 34, 1, 1, 1, 1, 55, 621, 2989, 6523, 6523, 2989, 621, 55, 1, 1
Offset: 0
A(3,3) = 8:
._____. ._____. ._____. ._____. ._____. ._____. ._____. ._____.
|_|_|_| | |_|_| |_|_|_| |_| |_| |_|_|_| |_| |_| | |_|_| | | |_|
|_|_|_| |___|_| | |_|_| |_|___| |_| |_| | |___| | |_|_| | |___|
|_|_|_| |_|_|_| |___|_| |_|_|_| |_|___| |___|_| |_____| |_____|.
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
1, 1, 3, 8, 18, 44, 107, 257, 621, ...
1, 1, 5, 18, 68, 233, 838, 2989, 10687, ...
1, 1, 8, 44, 233, 1262, 6523, 34468, 181615, ...
1, 1, 13, 107, 838, 6523, 51420, 396500, 3086898, ...
1, 1, 21, 257, 2989, 34468, 396500, 4577274, 52338705, ...
1, 1, 34, 621, 10687, 181615, 3086898, 52338705, 888837716, ...
Columns (or rows) k=0+1,2-10 give:
A000012,
A000045(n+1),
A322496,
A322497,
A322498,
A322499,
A322500,
A322501,
A322502,
A322503.
-
b:= proc(n, l) option remember; local k, m, r;
if n=0 or l=[] then 1
elif min(l)>0 then (t-> b(n-t, map(h->h-t, l)))(min(l))
elif l[-1]=n then b(n, subsop(-1=[][], l))
else for k while l[k]>0 do od; r:= 0;
for m from 0 while k+m<=nops(l) and l[k+m]=0 and n>m do
r:= r+b(n, [l[1..k-1][], 1$m, m+1, l[k+m+1..nops(l)][]])
od; r
fi
end:
A:= (n, k)-> b(max(n, k), [0$min(n, k)]):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, l_] := b[n, l] = Module[{k, m, r}, Which[n == 0 || l == {}, 1, Min[l] > 0, Function[t, b[n-t, l-t]][Min[l]], l[[-1]] == n, b[n, ReplacePart[ l, -1 -> Nothing]], True, For[k=1, l[[k]] > 0, k++]; r = 0; For[m=0, k+m <= Length[l] && l[[k+m]] == 0 && n>m, m++, r = r + b[n, Join[l[[1 ;; k-1]], Array[1&, m], {m+1}, l[[k+m+1 ;; Length[l]]]]]]; r]];
A[n_, k_] := b[Max[n, k], Array[0&, Min[n, k]]];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 18 2018, after Alois P. Heinz *)
A228482
T(n,k)=Number of nXk binary arrays with top left value 1 and no two ones adjacent horizontally, vertically or antidiagonally.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 9, 14, 9, 5, 8, 19, 41, 41, 19, 8, 13, 41, 127, 172, 127, 41, 13, 21, 88, 386, 728, 728, 386, 88, 21, 34, 189, 1181, 3084, 4354, 3084, 1181, 189, 34, 55, 406, 3605, 13050, 25699, 25699, 13050, 3605, 406, 55, 89, 872, 11013, 55252, 152373
Offset: 1
Some solutions for n=4 k=4
..1..0..0..1....1..0..1..0....1..0..0..1....1..0..1..0....1..0..1..0
..0..0..0..0....0..0..0..1....0..1..0..0....0..0..0..0....0..0..0..0
..0..0..0..1....0..0..0..0....0..0..1..0....0..1..0..0....0..0..0..0
..0..0..0..0....0..1..0..0....0..0..0..1....0..0..1..0....1..0..0..0
A219741
T(n,k) = Unmatched value maps: number of nXk binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 nXk array.
Original entry on oeis.org
1, 2, 2, 4, 6, 4, 7, 13, 13, 7, 12, 28, 42, 28, 12, 21, 60, 126, 126, 60, 21, 37, 129, 387, 524, 387, 129, 37, 65, 277, 1180, 2229, 2229, 1180, 277, 65, 114, 595, 3606, 9425, 13322, 9425, 3606, 595, 114, 200, 1278, 11012, 39905, 78661, 78661, 39905, 11012, 1278, 200
Offset: 1
Some solutions for n=3 k=4
..0..0..0..0....1..0..0..1....0..0..1..0....0..0..1..0....0..0..0..1
..0..1..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..1..0..0
..0..0..0..0....0..1..0..1....0..0..0..1....1..0..0..1....0..0..0..0
A243608
Number T(n,k) of ways k L-tiles can be placed on an n X n square; triangle T(n,k), n>=0, 0<=k<=A229093(n), read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 1, 9, 20, 11, 1, 1, 16, 87, 196, 176, 46, 2, 1, 25, 244, 1195, 3145, 4431, 3161, 1007, 111, 2, 1, 36, 545, 4544, 22969, 73098, 147502, 185744, 140288, 59140, 12313, 1046, 26, 1, 49, 1056, 13215, 106819, 587149, 2251309, 6082000, 11562155
Offset: 0
T(3,1) = 4:
._____. ._____. ._____. ._____.
| |_|_| |_|_|_| |_| |_| |_|_|_|
|___|_| | |_|_| |_|___| |_| |_|
|_|_|_| |___|_| |_|_|_| |_|___|
T(4,4) = 1:
._______.
| |_| |_|
|___|___|
| |_| |_|
|___|___|
T(5,6) = 2:
._________. ._________.
| |_|_| |_| |_| |_| |_|
|___| |___| | |___|___|
|_| |___|_| |___|_| |_|
| |___| |_| | |_| |___|
|___|_|___| |___|___|_| .
Triangle T(n,k) begins:
1;
1;
1, 1;
1, 4, 1;
1, 9, 20, 11, 1;
1, 16, 87, 196, 176, 46, 2;
1, 25, 244, 1195, 3145, 4431, 3161, 1007, 111, 2;
-
b:= proc(n, l) option remember; local k;
if n<2 then 1
elif min(l[])>0 then b(n-1, map(h->h-1, l))
else for k while l[k]>0 do od; expand(
b(n, subsop(k=1, l))+ `if`(n>1 and k (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$n])):
seq(T(n), n=0..10);
-
b[n_, l_] := b[n, l] = Module[{k}, Which[n<2, 1, Min[l]>0, b[n-1, l-1], True, For[k = 1, l[[k]] > 0, k++]; Expand[b[n, ReplacePart[l, k -> 1]] + If[n>1 && k 2, k+1 -> 1}]], 0]]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, Table[0, {n}]]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 12 2017, translated from Maple *)
A226543
Number of tilings of a 9 X n rectangle using 1 X 1 squares and L-tiles.
Original entry on oeis.org
1, 1, 55, 595, 11012, 168925, 2760690, 44159095, 711479843, 11435477118, 183947396032, 2958142131138, 47575298963072, 765124447990418, 12305134306097753, 197897152964385186, 3182680323964197938, 51185438892782012288, 823189555932846017125
Offset: 0
A226544
Number of tilings of a 10 X n rectangle using 1 X 1 squares and L-tiles.
Original entry on oeis.org
1, 1, 89, 1278, 33636, 715072, 16350693, 364647622, 8201909757, 183947396032, 4129523869606, 92675094208964, 2080048909984067, 46684042670495080, 1047776070980376086, 23516183336037445861, 527795545850035568780, 11845801476106616135344
Offset: 0
Showing 1-8 of 8 results.
Comments