A014417
Representation of n in base of Fibonacci numbers (the Zeckendorf representation of n). Also, binary words starting with 1 not containing 11, with the word 0 added.
Original entry on oeis.org
0, 1, 10, 100, 101, 1000, 1001, 1010, 10000, 10001, 10010, 10100, 10101, 100000, 100001, 100010, 100100, 100101, 101000, 101001, 101010, 1000000, 1000001, 1000010, 1000100, 1000101, 1001000, 1001001, 1001010, 1010000, 1010001, 1010010, 1010100, 1010101
Offset: 0
The Zeckendorf expansions of 1, 2, ... are 1 = 1 = Fib_2 -> 1, 2 = 2 = Fib_3 -> 10, 3 = Fib_4 -> 100, 4 = 3+1 = Fib_4 + Fib_2 -> 101, 5 = 5 = Fib_5 -> 1000, 6 = 1+5 = Fib_2 + Fib_5 -> 1001, etc.
- Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990.
- Donald E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.3, p. 169.
- Edouard Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.
- T. D. Noe and Harry J. Smith, Table of n, a(n) for n = 0..10000
- Paul Dalenberg and Tom Edgar, Consecutive factorial base Niven numbers, Fibonacci Quart., Vol. 56, No. 2 (2018), pp. 163-166.
- Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, 43 pages, no date, apparently unpublished. See Table 2.
- Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, unpublished, no date. [Cached copy, with permission]
- Donald E. Knuth, Fibonacci multiplication, Appl. Math. Lett., Vol. 1, No. 1 (1988), pp. 57-60.
- Julien Leroy, Michel Rigo and Manon Stipulanti, Counting the number of non-zero coefficients in rows of generalized Pascal triangles, Discrete Mathematics, Vol. 340, No. 5 (2017), pp. 862-881.
- Casey Mongoven, Zeckendorf Representations no. 17 (a musical composition with A014417).
- Wikipedia, Zeckendorf's theorem.
a(n) =
A003714(n) converted to binary.
See
A104326 for dual Zeckendorf representation of n.
-
a014417 0 = 0
a014417 n = foldl (\v z -> v * 10 + z) 0 $ a189920_row n
-- Reinhard Zumkeller, Mar 10 2013
-
A014417 := proc(n)
local nshi,Z,i ;
if n <= 1 then
return n;
end if;
nshi := n ;
Z := [] ;
for i from A130234(n) to 2 by -1 do
if nshi >= A000045(i) and nshi > 0 then
Z := [1,op(Z)] ;
nshi := nshi-A000045(i) ;
else
Z := [0,op(Z)] ;
end if;
end do:
add( op(i,Z)*10^(i-1),i=1..nops(Z)) ;
end proc: # R. J. Mathar, Jan 31 2015
-
fb[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n * Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k-- ]; FromDigits[fr]]; Table[ fb[n], {n, 0, 30}] (* Robert G. Wilson v, May 15 2004 *)
r = Map[Fibonacci, Range[2, 12]]; Table[Total[FromDigits@ PadRight[{1}, Flatten@ #] &@ Reverse@ Position[r, #] & /@ Abs@ Differences@ NestWhileList[Function[k, k - SelectFirst[Reverse@ r, # < k &]], n + 1, # > 1 &]], {n, 0, 33}] (* Michael De Vlieger, Mar 27 2016, Version 10 *)
FromDigits/@Select[Tuples[{0,1},7],SequenceCount[#,{1,1}]==0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 14 2019 *)
-
Zeckendorf(n)=my(k=0,v,m); while(fibonacci(k)<=n,k=k+1); m=k-1; v=vector(m-1); v[1]=1; n=n-fibonacci(k-1); while(n>0,k=0; while(fibonacci(k)<=n,k=k+1); v[m-k+2]=1; n=n-fibonacci(k-1)); v \\ Ralf Stephan
-
Zeckendorf(n)= { local(k); a=0; while(n>0, k=0; while(fibonacci(k)<=n, k=k+1); a=a+10^(k-3); n=n-fibonacci(k-1); ); a }
{ for (n=0, 10000, Zeckendorf(n); print(n," ",a); write("b014417.txt", n, " ", a) ) } \\ Harry J. Smith, Jan 17 2009
-
from sympy import fibonacci
def a(n):
k=0
x=0
while n>0:
k=0
while fibonacci(k)<=n: k+=1
x+=10**(k - 3)
n-=fibonacci(k - 1)
return x
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 07 2017, after PARI code by Harry J. Smith
Definition expanded and Duchene et al. reference added by
N. J. A. Sloane, Aug 07 2018
A228277
Number of n X n binary arrays with top left value 1 and no two ones adjacent horizontally, vertically or nw-se diagonally.
Original entry on oeis.org
1, 1, 13, 133, 3631, 172082, 16566199, 3057290265, 1105411581741, 776531523355217, 1063228770141145384, 2834013489992345694498, 14712337761578682394367473, 148727865257442275211424889367
Offset: 1
The thirteen solutions for n=3 correspond to the thirteen possible values of 5-bit numbers with no two adjacent bits equal to 1, namely, the matrices
( 1 0 a )
( 0 0 b )
( e d c ) ; with abcde = A014417(0,...,12) = 0, 1, 10, 100, 101, 1000, 1001, 1010, 10000, 10001, 10010, 10100, 10101 (leading zeros omitted). - _M. F. Hasler_, Apr 27 2014
Some solutions for n=4:
.1..0..0..1. .1..0..0..0. .1..0..0..0. .1..0..0..0. .1..0..0..0
.0..0..0..0. .0..0..0..1. .0..0..0..0. .0..0..1..0. .0..0..0..0
.0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1
.1..0..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..0. .0..0..1..0
The last example shows that sw-ne (= anti)diagonally adjacent "1"s are allowed. See A228476, A228506 and A228390 for other variants.
A226444
Number A(n,k) of tilings of a k X n rectangle using 1 X 1 squares and L-tiles; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 6, 5, 1, 1, 1, 1, 8, 13, 13, 8, 1, 1, 1, 1, 13, 28, 42, 28, 13, 1, 1, 1, 1, 21, 60, 126, 126, 60, 21, 1, 1, 1, 1, 34, 129, 387, 524, 387, 129, 34, 1, 1, 1, 1, 55, 277, 1180, 2229, 2229, 1180, 277, 55, 1, 1
Offset: 0
A(3,3) = 6:
._____. ._____. ._____. ._____. ._____. ._____.
|_|_|_| | |_|_| |_|_|_| |_| |_| |_|_|_| |_| |_|
|_|_|_| |___|_| | |_|_| |_|___| |_| |_| | |___|
|_|_|_| |_|_|_| |___|_| |_|_|_| |_|___| |___|_|.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 3, 5, 8, 13, 21, 34, ...
1, 1, 3, 6, 13, 28, 60, 129, 277, ...
1, 1, 5, 13, 42, 126, 387, 1180, 3606, ...
1, 1, 8, 28, 126, 524, 2229, 9425, 39905, ...
1, 1, 13, 60, 387, 2229, 13322, 78661, 466288, ...
1, 1, 21, 129, 1180, 9425, 78661, 647252, 5350080, ...
1, 1, 34, 277, 3606, 39905, 466288, 5350080, 61758332, ...
Columns (or rows) k=0+1,2-10 give:
A000012,
A000045(n+1),
A002478,
A105262,
A219737(n-1) for n>2,
A219738 (n-1) for n>2,
A219739(n-1) for n>1,
A219740(n-1) for n>2,
A226543,
A226544.
-
b:= proc(n, l) option remember; local k, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; b(n, subsop(k=1, l))+
`if`(k b(max(n, k), [0$min(n, k)]):
seq(seq(A(n, d-n), n=0..d), d=0..14);
[Zeilberger gives Maple code to find generating functions for the columns - see links in A228285. - N. J. A. Sloane, Aug 22 2013]
-
b[n_, l_] := b[n, l] = Module[{k, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; b[n, ReplacePart[l, k -> 1]] + If[k < Length[l] && l[[k+1]] == 0, b[n, ReplacePart[l, {k -> 1, k+1 -> 2}]], 0] ] ]; a[n_, k_] := b[Max[n, k], Array[0&, Min[n, k]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
A228482
T(n,k)=Number of nXk binary arrays with top left value 1 and no two ones adjacent horizontally, vertically or antidiagonally.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 9, 14, 9, 5, 8, 19, 41, 41, 19, 8, 13, 41, 127, 172, 127, 41, 13, 21, 88, 386, 728, 728, 386, 88, 21, 34, 189, 1181, 3084, 4354, 3084, 1181, 189, 34, 55, 406, 3605, 13050, 25699, 25699, 13050, 3605, 406, 55, 89, 872, 11013, 55252, 152373
Offset: 1
Some solutions for n=4 k=4
..1..0..0..1....1..0..1..0....1..0..0..1....1..0..1..0....1..0..1..0
..0..0..0..0....0..0..0..1....0..1..0..0....0..0..0..0....0..0..0..0
..0..0..0..1....0..0..0..0....0..0..1..0....0..1..0..0....0..0..0..0
..0..0..0..0....0..1..0..0....0..0..0..1....0..0..1..0....1..0..0..0
A219741
T(n,k) = Unmatched value maps: number of nXk binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 nXk array.
Original entry on oeis.org
1, 2, 2, 4, 6, 4, 7, 13, 13, 7, 12, 28, 42, 28, 12, 21, 60, 126, 126, 60, 21, 37, 129, 387, 524, 387, 129, 37, 65, 277, 1180, 2229, 2229, 1180, 277, 65, 114, 595, 3606, 9425, 13322, 9425, 3606, 595, 114, 200, 1278, 11012, 39905, 78661, 78661, 39905, 11012, 1278, 200
Offset: 1
Some solutions for n=3 k=4
..0..0..0..0....1..0..0..1....0..0..1..0....0..0..1..0....0..0..0..1
..0..1..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..1..0..0
..0..0..0..0....0..1..0..1....0..0..0..1....1..0..0..1....0..0..0..0
A219737
Unmatched value maps: number of n X 4 binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 n X 4 array.
Original entry on oeis.org
7, 28, 126, 524, 2229, 9425, 39905, 168925, 715072, 3027049, 12813931, 54243509, 229621433, 972024617, 4114736810, 17418344167, 73734658344, 312130693269, 1321299533915, 5593273893746, 23677229915913, 100229530526756
Offset: 1
Some solutions for n=3:
..0..1..0..1....0..0..1..0....0..0..0..1....1..0..1..0....1..0..0..0
..0..0..0..0....1..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0
..1..0..0..0....0..1..0..1....0..1..0..0....0..1..0..1....1..0..0..0
A219738
Unmatched value maps: number of nX5 binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 nX5 array.
Original entry on oeis.org
12, 60, 387, 2229, 13322, 78661, 466288, 2760690, 16350693, 96830726, 573456240, 3396136349, 20112704280, 119112043349, 705408898268, 4177593432263, 24740667779362, 146519915909536, 867724589734469, 5138864287202152
Offset: 1
Some solutions for n=3
..0..1..0..0..0....0..1..0..0..0....1..0..1..0..0....0..0..1..0..0
..0..0..1..0..0....0..0..0..0..1....0..0..0..0..0....0..0..0..0..1
..1..0..0..1..0....0..1..0..0..0....1..0..1..0..0....0..1..0..0..0
A219739
Unmatched value maps: number of nX6 binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 nX6 array.
Original entry on oeis.org
21, 129, 1180, 9425, 78661, 647252, 5350080, 44159095, 364647622, 3010723330, 24858935864, 205253857220, 1694729679245, 13992960979394, 115536377026413, 953955009802438, 7876568121973188, 65034854910941849, 536976546612691621
Offset: 1
Some solutions for n=3
..1..0..1..0..1..0....0..0..1..0..0..0....0..0..0..0..0..0....0..0..1..0..0..1
..0..0..0..0..0..0....1..0..0..1..0..1....0..1..0..0..0..1....0..0..0..0..0..0
..1..0..0..1..0..0....0..0..0..0..0..0....0..0..0..1..0..0....0..1..0..1..0..1
A219740
Unmatched value maps: number of nX7 binary arrays indicating the locations of corresponding elements not equal to any horizontal, vertical or antidiagonal neighbor in a random 0..1 nX7 array.
Original entry on oeis.org
37, 277, 3606, 39905, 466288, 5350080, 61758332, 711479843, 8201909757, 94531063074, 1089590912023, 12558669019786, 144752526242487, 1668430514943073, 19230483410164823, 221652312986931867
Offset: 1
Some solutions for n=3
..0..0..1..0..0..0..1....1..0..0..0..0..0..1....0..0..1..0..0..1..0
..0..0..0..0..0..0..0....0..1..0..0..1..0..0....0..0..0..0..0..0..0
..1..0..1..0..0..0..1....0..0..0..0..0..1..0....0..1..0..1..0..0..0
A228278
Number of n X 3 binary arrays with top left value 1 and no two ones adjacent horizontally, vertically or nw-se diagonally.
Original entry on oeis.org
2, 3, 13, 35, 112, 337, 1034, 3154, 9637, 29431, 89895, 274564, 838609, 2561372, 7823242, 23894643, 72981777, 222909351, 680835436, 2079486057, 6351405998, 19399196250, 59251261117, 180972030923, 552745635451, 1688259428536
Offset: 1
Some solutions for n=4:
..1..0..0....1..0..0....1..0..0....1..0..1....1..0..0....1..0..1....1..0..0
..0..0..0....0..0..0....0..0..1....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..1....0..0..0....0..0..0....0..0..0....1..0..0....0..0..1....0..1..0
..0..0..0....1..0..1....1..0..0....0..1..0....0..0..1....0..1..0....1..0..0
Showing 1-10 of 21 results.
Comments