A105318 Starting prime for the smallest prime Pythagorean sequence for n triangles.
5, 3, 271, 169219, 356498179, 2500282512131, 20594058719087111, 2185103796349763249
Offset: 1
Examples
5 is a(1) because (5^2+1)/2 = 13 is prime, but (13^2+1)/2 = 85 is not.
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 258.
Links
- C. K. Caldwell, The Prime Glossary, Pythagorean triples
- H. Dubner, Posting to Number Theory List
- H. Dubner and T. Forbes, Prime Pythagorean Triangles
- H. Dubner and T. Forbes, Journal of Integer Sequences, Vol. 4(2001) #01.2.3, Prime Pythagorean triangles
- T. Forbes, Posting to Number Theory List
- T. Forbes, Posting to Number Theory List
Programs
-
Python
from sympy import isprime, nextprime; m = lambda x: (x*x+1)//2; p = 2; D = {} while p < 2185103796349763249: p = nextprime(p); q = m(p); n = 1 while isprime(q) and isprime(m(q)): n += 1; q = m(q) if n not in D: D.update({n: p}) [print(k, end =', ') for key, k in sorted(D.items())] # Ya-Ping Lu, May 17 2025
Extensions
a(1) added by T. D. Noe, Jan 29 2011
Comments