A105489 Number of partitions of {1...n} containing 3 detached pairs of consecutive integers, i.e., partitions in which only 1- or 2-strings of consecutive integers can appear in a block and there are exactly three 2-strings.
2, 20, 150, 1040, 7105, 49112, 347760, 2537640, 19135875, 149285400, 1205088742, 10062575068, 86859191510, 774456785200, 7126496659960, 67617733760064, 660932425168071, 6649326113764980, 68793130453044760, 731299516881396540
Offset: 6
Examples
a(6) = 2 because the partitions of {1,2,3,4,5,6} with 3 detached pairs of consecutive integers are 12/34/56, 1256/34.
Links
- A. O. Munagi, Set Partitions with Successions and Separations, Int. J. Math and Math. Sc. 2005, no. 3 (2005), 451-463.
Programs
-
Maple
seq(binomial(n-3,3)*combinat[bell](n-4),n=6..25); a:=n->sum(numbcomb (n,2)*bell(n)/3, j=0..n): seq(a(n), n=2..21); # Zerinvary Lajos, Apr 25 2007
Formula
a(n) = binomial(n-3, 3)*Bell(n-4), which is the case r=3 in the general case of r pairs, d(n,r) = binomial(n-r, r)*Bell(n-r-1), which is the case t=2 of the general formula d(n,r,t) = binomial(n-r*(t-1), r)*Bell(n-r*(t-1)-1).
Comments