cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A105495 Triangle read by rows: T(n,k) is the number of compositions of n into k parts when parts equal to q are of q^2 kinds.

Original entry on oeis.org

1, 4, 1, 9, 8, 1, 16, 34, 12, 1, 25, 104, 75, 16, 1, 36, 259, 328, 132, 20, 1, 49, 560, 1134, 752, 205, 24, 1, 64, 1092, 3312, 3338, 1440, 294, 28, 1, 81, 1968, 8514, 12336, 7815, 2456, 399, 32, 1, 100, 3333, 19800, 39572, 35004, 15765, 3864, 520, 36, 1, 121, 5368
Offset: 1

Views

Author

Emeric Deutsch, Apr 10 2005

Keywords

Comments

Triangle T(n,k)=
1. Riordan Array (1,(x+x^2)/(1-x)^3) without first column.
2. Riordan Array ((1+x)/(1-x)^3,(x+x^2)/(1-x)^3) numbering triangle (0,0).
[Vladimir Kruchinin, Nov 25 2011]
Triangle T(n,k), 1<=k<=n, given by (0, 4, -7/4, 17/28, -32/119, 7/17, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 20 2012
T is the convolution triangle of the squares (A000290). - Peter Luschny, Oct 19 2022

Examples

			T(3,2)=8 because we have (1,2),(1,2'),(1,2"),(1,2'"),(2,1),(2',1),(2",1) and (2'",1).
Triangle begins:
  1;
  4,1;
  9,8,1;
  16,34,12,1;
  25,104,75,16,1;
  ...
Triangle (0, 4, -7/4, 17/28, -32/119, 7/17, 0, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins :
  1
  0, 1
  0, 4, 1
  0, 9, 8, 1
  0, 16, 34, 12, 1
  0, 25, 104, 75, 16, 1
  ...
		

Crossrefs

Row sums yield A033453.

Programs

  • Maple
    G:=t*z*(1+z)/((1-z)^3-t*z*(1+z)): Gser:=simplify(series(G,z=0,13)): for n from 1 to 12 do P[n]:=coeff(Gser,z^n) od: for n from 1 to 11 do seq(coeff(P[n],t^k), k=1..n) od; # yields sequence in triangular form
    # Alternatively:
    T := proc(k,n) option remember;
    if k=n then 1 elif k=0 then 0 else add(i^2*T(k-1,n-i), i=1..n-k+1) fi end:
    A105495 := (n,k) -> T(k,n):
    for n from 1 to 9 do seq(A105495(n,k), k=1..n) od; # Peter Luschny, Mar 12 2016
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> n^2); # Peter Luschny, Oct 19 2022
  • Mathematica
    nn=8;a=(x+x^2)/(1-x)^3;CoefficientList[Series[1/(1-y a),{x,0,nn}],{x,y}]//Grid  (* Geoffrey Critzer, Aug 31 2012 *)
  • Maxima
    T(n,k):=sum(binomial(k,i)*binomial(n+2*k-i-1,3*k-1),i,0,n-k); /* Vladimir Kruchinin, Nov 25 2011 */
    
  • SageMath
    @cached_function
    def T(k,n):
        if k==n: return 1
        if k==0: return 0
        return sum(i^2*T(k-1,n-i) for i in (1..n-k+1))
    A105495 = lambda n,k: T(k, n)
    for n in (0..6): print([A105495(n, k) for k in (0..n)]) # Peter Luschny, Mar 12 2016

Formula

G.f.: t*z*(1+z)/((1-z)^3-t*z*(1+z)).
From Vladimir Kruchinin, Nov 25 2011: (Start)
G.f.: ((x+x^2)/(1-x)^3)^k = Sum_{n>=k} T(n,k)*x^n.
T(n,k) = Sum{i=0..n-k} binomial(k,i)*binomial(n+2*k-i-1,3*k-1). (End)