cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A105511 Number of times 1 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 7, 7, 7, 7, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 13, 13, 13, 13, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 19, 20, 20, 20, 20, 21, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]] == 1, 1, 0], {n, 0, 100}]] (* Amiram Eldar, Jan 12 2023 *)
  • PARI
    (leadingdigit(n, b=10) = n \ 10^logint(n, b));
    (isok(n) = leadingdigit(fibonacci(n))==1);
    (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023

Formula

a(n) = #{k: A008963(k) = 1 and 0<=k<=n};
a(A105501(n)) = a(A105501(n) - 1) + 1;
n = a(n) + A105512(n) + A105513(n) + A105514(n) + A105515(n) + A105516(n) + A105517(n) + A105518(n) + A105519(n).
a(n) ~ log_10(2) * n. - Amiram Eldar, Jan 12 2023

A105519 Number of times 9 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[First[IntegerDigits[Fibonacci[n]]]==9,1,0],{n,0,110}]// Accumulate (* Harvey P. Dale, Nov 27 2018 *)
  • PARI
    (leadingdigit(n, b=10) = n \ 10^logint(n, b));
    (isok(n) = leadingdigit(fibonacci(n))==9);
    (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 18 2023

Formula

a(n) = #{k: A008963(k) = 9 and 0<=k<=n};
a(A105509(n)) = a(A105509(n) - 1) + 1;
n = A105511(n) + A105512(n) + A105513(n) + A105514(n) + A105515(n) + A105516(n) + A105517(n) + A105518(n) + a(n).
a(n) ~ (1 - log_10(9)) * n. - Amiram Eldar, Jan 12 2023

A105512 Number of times 2 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]] == 2, 1, 0], {n, 0, 100}]] (* Amiram Eldar, Jan 12 2023 *)
  • PARI
    (leadingdigit(n, b=10) = n \ 10^logint(n, b));
    (isok(n) = leadingdigit(fibonacci(n))==2);
    (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023

Formula

a(n) = #{k: A008963(k) = 2 and 0<=k<=n};
a(A105502(n)) = a(A105502(n) - 1) + 1;
n = A105511(n) + a(n) + A105513(n) + A105514(n) + A105515(n) + A105516(n) + A105517(n) + A105518(n) + A105519(n).
a(n) ~ log_10(3/2) * n. - Amiram Eldar, Jan 12 2023

A105513 Number of times 3 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]] == 3, 1, 0], {n, 0, 100}]] (* Amiram Eldar, Jan 12 2023 *)
  • PARI
    (leadingdigit(n, b=10) = n \ 10^logint(n, b));
    (isok(n) = leadingdigit(fibonacci(n))==3);
    (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023

Formula

a(n) = #{k: A008963(k) = 3 and 0<=k<=n};
a(A105503(n)) = a(A105503(n) - 1) + 1;
n = A105511(n) + A105512(n) + a(n) + A105514(n) + A105515(n) + A105516(n) + A105517(n) + A105518(n) + A105519(n).
a(n) ~ log_10(4/3) * n. - Amiram Eldar, Jan 12 2023

A105514 Number of times 4 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]] == 4, 1, 0], {n, 0, 100}]] (* Amiram Eldar, Jan 12 2023 *)
  • PARI
    (leadingdigit(n, b=10) = n \ 10^logint(n, b));
    (isok(n) = leadingdigit(fibonacci(n))==4);
    (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023

Formula

a(n) = #{k: A008963(k) = 4 and 0<=k<=n};
a(A105504(n)) = a(A105504(n) - 1) + 1;
n = A105511(n) + A105512(n) + A105513(n) + a(n) + A105515(n) + A105516(n) + A105517(n) + A105518(n) + A105519(n).
a(n) ~ log_10(5/4) * n. - Amiram Eldar, Jan 12 2023

A105515 Number of times 5 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[If[First[IntegerDigits[#]]==5,1,0]&/@Fibonacci[Range[0,110]]] (* Harvey P. Dale, Nov 02 2014 *)
  • PARI
    (leadingdigit(n, b=10) = n \ 10^logint(n, b));
    (isok(n) = leadingdigit(fibonacci(n))==5);
    (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023

Formula

a(n) = #{k: A008963(k) = 5 and 0<=k<=n};
a(A105505(n)) = a(A105505(n) - 1) + 1;
n = A105511(n) + A105512(n) + A105513(n) + A105514(n) + a(n) + A105516(n) + A105517(n) + A105518(n) + A105519(n).
a(n) ~ log_10(6/5) * n. - Amiram Eldar, Jan 12 2023

A105516 Number of times 6 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Prepend[Accumulate[If[First[IntegerDigits[#]]==6,1,0]&/@Fibonacci[ Range[ 110]]],0] (* Harvey P. Dale, Feb 18 2011 *)
  • PARI
    (leadingdigit(n, b=10) = n \ 10^logint(n, b));
    (isok(n) = leadingdigit(fibonacci(n))==6);
    (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023

Formula

a(n) = #{k: A008963(k) = 6 and 0<=k<=n};
a(A105506(n)) = a(A105506(n) - 1) + 1;
n = A105511(n) + A105512(n) + A105513(n) + A105514(n) + A105515(n) + a(n) + A105517(n) + A105518(n) + A105519(n).
a(n) ~ log_10(7/6) * n. - Amiram Eldar, Jan 12 2023

A105517 Number of times 7 is the leading digit of the first n+1 Fibonacci numbers in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
Offset: 0

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[If[IntegerDigits[Fibonacci[n]][[1]]==7,1,0],{n,0,120}]] (* Harvey P. Dale, Apr 29 2018 *)
  • PARI
    (leadingdigit(n, b=10) = n \ 10^logint(n, b));
    (isok(n) = leadingdigit(fibonacci(n))==7);
    (lista(n)=my(a=vector(1+n), r=0); for (i=1, n, r+=isok(i); a[1+i]=r); a) \\ Winston de Greef, Mar 17 2023

Formula

a(n) = #{k: A008963(k) = 7 and 0<=k<=n};
a(A105507(n)) = a(A105507(n) - 1) + 1;
n = A105511(n) + A105512(n) + A105513(n) + A105514(n) + A105515(n) + A105516(n) + a(n) + A105518(n) + A105519(n).
a(n) ~ log_10(8/7) * n. - Amiram Eldar, Jan 12 2023

A105508 Numbers m such that 8 is the leading digit of the m-th Fibonacci number in decimal representation.

Original entry on oeis.org

6, 11, 30, 54, 73, 78, 97, 121, 140, 145, 164, 188, 207, 231, 255, 274, 298, 322, 341, 365, 389, 408, 432, 451, 456, 475, 499, 518, 523, 542, 566, 585, 590, 609, 633, 652, 676, 700, 719, 743, 767, 786, 810, 834, 853, 877, 896, 901, 920, 944, 963, 968, 987
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2005

Keywords

Examples

			a(1)=6 since the 6th Fibonacci: 8 begins with 8.
a(2)=11 since the 11th Fibonacci: 89 begins with 8.
		

Crossrefs

Programs

Formula

A008963(a(n)) = A000030(A000045(a(n))) = 8.
A105518(a(n)) = A105518(a(n) - 1) + 1.
A000045(a(n)) = A045732(n).
a(n) ~ kn by the equidistribution theorem, where k = log(10)/(log(9) - log(8)) = 19.549378.... - Charles R Greathouse IV, Oct 07 2016

Extensions

Example and formulas edited by Michel Marcus, Jan 10 2014
Showing 1-9 of 9 results.