A105565 a(n) = if (exactly 5 Fibonacci numbers exist with exactly n digits) then 1, otherwise 0.
0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1
Offset: 1
Examples
The Fibonacci numbers with two decimal digits are 13, 21, 34, 55, 89; a total of five, so that a(2)=1.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Igor Szczyrba, Rafał Szczyrba, and Martin Burtscher, Analytic Representations of the n-anacci Constants and Generalizations Thereof, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
- Jürgen Spilker, Die Ziffern der Fibonacci-Zahlen, Elemente der Mathematik 58 (Birkhäuser 2003).
- Eric Weisstein's World of Mathematics, Fibonacci Number
- Eric Weisstein's World of Mathematics, Almost Periodic Function
Programs
-
Maple
n:= 1: count:= 2: a:= 0: b:= 1: for m from 2 while n < 101 do c:= b; b:= a+b; a:= c; s:= ilog10(b)+1; if s = n then count:= count+1 else if count = 5 then A[n]:= 1 else A[n]:= 0 fi; count:= 1; n:= s fi od: seq(A[i],i=1..100); # Robert Israel, Dec 17 2018
Formula
For n>1, a(n) = [{n*alpha+beta}<{alpha}], where alpha=log(10)/log(phi), beta=log(5)/(2*log(phi)), [X] is the Iverson bracket, {x}=x-floor(x), denotes the fractional part of x, and phi=(1+sqrt(5))/2. - Hans J. H. Tuenter, Jul 29 2025
Comments