cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A050815 Number of positive Fibonacci numbers with n decimal digits.

Original entry on oeis.org

6, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Comments

If n>1 then a(n) = 4 or 5. - Robert Gerbicz, Sep 05 2002
The sequence is almost periodic, see also A072353. - Reinhard Zumkeller, Apr 14 2005

Examples

			At length 1 there are 6 such numbers: 1, 1, 2, 3, 5 and 8.
		

Crossrefs

See A098842 for another version.

Programs

  • Mathematica
    Drop[Last/@Tally[Table[IntegerLength[Fibonacci[n]],{n,505}]],-1] (* Jayanta Basu, Jun 01 2013 *)

Formula

Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = log(10)/log(phi) = 1/A097348 = 4.7849719667... - Amiram Eldar, Jan 12 2022
For n>1, a(n) = 4+[{n*alpha+beta}<{alpha}], where alpha=log(10)/log(phi), beta=log(5)/(2*log(phi)), [X] is the Iverson bracket, {x}=x-floor(x), denotes the fractional part of x, and phi=(1+sqrt(5))/2. - Hans J. H. Tuenter, Jul 20 2025
a(n) = A072354(n+1)-A072354(n), a first-order difference. - Hans J. H. Tuenter, Jul 20 2025

A105563 a(n) = if (exactly 4 Fibonacci numbers exist with exactly n digits) then 1, otherwise 0.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 14 2005

Keywords

Comments

The sequence is almost periodic, see also A105564;
Asymptotically, a fraction of 1-alpha=0.215028... of the terms are 1. For the partial sums S(n) = Sum_{k=1..n} a(k), this implies S(n)~(1-alpha)*n. Conjecture: -beta < S(n)-(1-alpha)*n < 1-beta. The constants alpha and beta are as defined in the formula section. - Hans J. H. Tuenter, Aug 28 2025

Crossrefs

Programs

  • Mathematica
    If[#==4,1,0]&/@Tally[IntegerLength/@Fibonacci[Range[500]]][[;;,2]] (* Harvey P. Dale, Nov 15 2023 *)

Formula

a(n) = 1 - A105565(n), for n>1.
a(n) = 5 - A050815(n), for n>1. - Hans J. H. Tuenter, Aug 28 2025
For n>1, a(n) = [{n*alpha+beta}>alpha], where alpha=log(10)/log(phi)-4, beta=log(5)/(2*log(phi))-1, [] is the Iverson bracket, {x}=x-floor(x), denotes the fractional part of x, and phi = (1+sqrt(5))/2 = A001622. - Hans J. H. Tuenter, Aug 28 2025

A105566 Number of blocks of exactly 5 Fibonacci numbers having equal length <= n.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 5, 5, 6, 7, 8, 9, 9, 10, 11, 12, 13, 13, 14, 15, 16, 16, 17, 18, 19, 20, 20, 21, 22, 23, 24, 24, 25, 26, 27, 27, 28, 29, 30, 31, 31, 32, 33, 34, 34, 35, 36, 37, 38, 38, 39, 40, 41, 42, 42, 43, 44, 45, 45, 46, 47, 48, 49, 49, 50, 51, 52, 53, 53, 54, 55, 56, 56, 57
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 14 2005

Keywords

Comments

a(n) = Sum_{k=1..n} A105565(k); a(n) = n - A105564(n);
lim_{n->inf} a(n)/n = 1/log_10((1+sqrt(5))/2) - 4 = 0.784....

References

  • Juergen Spilker, Die Ziffern der Fibonacci-Zahlen, Elemente der Mathematik 58 (Birkhäuser 2003).

Crossrefs

Showing 1-3 of 3 results.