cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A050815 Number of positive Fibonacci numbers with n decimal digits.

Original entry on oeis.org

6, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 5, 5, 5
Offset: 1

Views

Author

Patrick De Geest, Oct 15 1999

Keywords

Comments

If n>1 then a(n) = 4 or 5. - Robert Gerbicz, Sep 05 2002
The sequence is almost periodic, see also A072353. - Reinhard Zumkeller, Apr 14 2005

Examples

			At length 1 there are 6 such numbers: 1, 1, 2, 3, 5 and 8.
		

Crossrefs

See A098842 for another version.

Programs

  • Mathematica
    Drop[Last/@Tally[Table[IntegerLength[Fibonacci[n]],{n,505}]],-1] (* Jayanta Basu, Jun 01 2013 *)

Formula

Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = log(10)/log(phi) = 1/A097348 = 4.7849719667... - Amiram Eldar, Jan 12 2022
For n>1, a(n) = 4+[{n*alpha+beta}<{alpha}], where alpha=log(10)/log(phi), beta=log(5)/(2*log(phi)), [X] is the Iverson bracket, {x}=x-floor(x), denotes the fractional part of x, and phi=(1+sqrt(5))/2. - Hans J. H. Tuenter, Jul 20 2025
a(n) = A072354(n+1)-A072354(n), a first-order difference. - Hans J. H. Tuenter, Jul 20 2025

A105565 a(n) = if (exactly 5 Fibonacci numbers exist with exactly n digits) then 1, otherwise 0.

Original entry on oeis.org

0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 14 2005

Keywords

Comments

The sequence is almost periodic, see also A105566;
a(n) = 1 - A105563(n), for n>1.
a(n) = A050815(n) - 4, for n>1. - Hans J. H. Tuenter, Jul 29 2025

Examples

			The Fibonacci numbers with two decimal digits are 13, 21, 34, 55, 89; a total of five, so that a(2)=1.
		

Crossrefs

Programs

  • Maple
    n:= 1: count:= 2: a:= 0: b:= 1:
    for m from 2 while n < 101 do
      c:= b; b:= a+b; a:= c;
      s:= ilog10(b)+1;
      if s = n then count:= count+1
      else
        if count = 5 then A[n]:= 1 else A[n]:= 0 fi;
        count:= 1; n:= s
      fi
    od:
    seq(A[i],i=1..100); # Robert Israel, Dec 17 2018

Formula

For n>1, a(n) = [{n*alpha+beta}<{alpha}], where alpha=log(10)/log(phi), beta=log(5)/(2*log(phi)), [X] is the Iverson bracket, {x}=x-floor(x), denotes the fractional part of x, and phi=(1+sqrt(5))/2. - Hans J. H. Tuenter, Jul 29 2025

A105564 Number of blocks of exactly 4 Fibonacci numbers having equal length <= n.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 14 2005

Keywords

Comments

Lim_{n->infinity} a(n)/n = 5 - 1/log_10((1+sqrt(5))/2) = 0.215....
a(n) = Sum_{k=1..n} A105563(k); a(n) = n - A105566(n).

References

  • Juergen Spilker, Die Ziffern der Fibonacci-Zahlen, Elemente der Mathematik 58 (Birkhäuser 2003).

A144601 Christoffel word of slope 3/11.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Jan 13 2009

Keywords

Crossrefs

See A144595 for further details.
Different from A105563.

Formula

a(n) = a(n-14). - R. J. Mathar, May 30 2025
G.f.: -x^4*(1+x^5+x^9) / ( (x-1)*(1+x^6+x^5+x^4+x^3+x^2+x)*(1+x)*(1-x+x^2-x^3+x^4-x^5+x^6) ). - R. J. Mathar, May 30 2025
Showing 1-4 of 4 results.