A105633 Row sums of triangle A105632.
1, 2, 4, 9, 22, 57, 154, 429, 1223, 3550, 10455, 31160, 93802, 284789, 871008, 2681019, 8298933, 25817396, 80674902, 253106837, 796968056, 2517706037, 7977573203, 25347126630, 80738862085, 257778971504, 824798533933
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + 2*x + 4*x^2 + 9*x^3 + 22*x^4 + 57*x^5 + 154*x^6 + 429*x^7 + ... with A(x)^2 = 1 + 4*x + 12*x^2 + 34*x^3 + 96*x^4 + 274*x^5 + 793*x^6 + ... where A(x) = 1 + x*(2-x)*A(x) + x^2*(1-x)*A(x)^2. The logarithm of the g.f. begins: log(A(x)) = (1 + (1-x))*x + (1 + 2^2*(1-x) + (1-x)^2)*x^2/2 + (1 + 3^2*(1-x) + 3^2*(1-x)^2 + (1-x)^3)*x^3/3 + (1 + 4^2*(1-x) + 6^2*(1-x)^2 + 4^2*(1-x)^3 + (1-x)^4)*x^4/4 + (1 + 5^2*(1-x) + 10^2*(1-x)^2 + 10^2*(1-x)^3 + 5^2*(1-x)^4 + (1-x)^5)*x^5/5 + ... Explicitly, log(A(x)) = 2*x + 4*x^2/2 + 11*x^3/3 + 32*x^4/4 + 97*x^5/5 + 301*x^6/6 + 947*x^7/7 + 3008*x^8/8 + 9623*x^9/9 + 30959*x^10/10 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Andrei Asinowski, Axel Bacher, Cyril Banderier, and Bernhard Gittenberger, Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata, Laboratoire d'Informatique de Paris Nord (LIPN 2019).
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Permutations avoiding a simsun pattern, The Electronic Journal of Combinatorics (2020) Vol. 27, Issue 3, P3.45. (See a_n in Theorem 4.)
- Jean-Luc Baril, Daniela Colmenares, José L. Ramírez, Emmanuel D. Silva, Lina M. Simbaqueba, and Diana A. Toquica, Consecutive pattern-avoidance in Catalan words according to the last symbol, Univ. Bourgogne (France 2023).
- Jean-Luc Baril and José Luis Ramírez, Descent distribution on Catalan words avoiding ordered pairs of Relations, arXiv:2302.12741 [math.CO], 2023. See pp. 3, 8.
- Jean Luc Baril, Rigoberto Flórez, and José L. Ramirez, Generalized Narayana arrays, restricted Dyck paths, and related bijections, Univ. Bourgogne (France, 2025). See p. 10.
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018. See p. 8.
- Maciej Bendkowski, Quantitative aspects and generation of random lambda and combinatory logic terms, Ph.D. Thesis, Jagiellonian University, Kraków, 2017.
- Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc, Combinatorics of λ-terms: a natural approach, arXiv:1609.08106 [cs.LO], 2016.
- Maciej Bendkowski, Katarzyna Grygiel, Pierre Lescanne, and Marek Zaionc, A Natural Counting of Lambda Terms, arXiv preprint arXiv:1506.02367 [cs.LO], 2015.
- Maciej Bendkowski, K. Grygiel, and P. Tarau, Random generation of closed simply-typed lambda-terms: a synergy between logic programming and Boltzmann samplers, arXiv preprint arXiv:1612.07682 [cs.LO], 2016-2017.
- David Callan, On Ascent, Repetition and Descent Sequences, arXiv:1911.02209 [math.CO], 2019. See p. 12.
- Sergi Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, arXiv:2008.05669 [math.CO], 2020. See p. 5.
- Juan B. Gil and Michael D. Weiner, On pattern-avoiding Fishburn permutations, arXiv:1812.01682 [math.CO], 2018. See pp. 4, 6.
- Katarzyna Grygiel and Pierre Lescanne, A natural counting of lambda terms, Preprint 2015.
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- Toufik Mansour, Statistics on Dyck Paths, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.5.
- A. Sapounakis et al., Ordered trees and the inorder transversal, Disc. Math., 306 (2006), 1732-1741.
- Robin D. P. Zhou, Pattern avoidance in revised ascent sequences, arXiv:2505.05171 [math.CO], 2025. See pp. 4, 20.
Programs
-
Maple
a := n -> add((-1)^i*hypergeom([(i+1)/2, i/2+1, i-n-1], [1, 2], -4), i=0..n+1): seq(simplify(a(n)), n=0..26); # Peter Luschny, May 03 2018
-
Mathematica
CoefficientList[Series[(1 - x - Sqrt[(1 - x)^2 - 4 x^2/(1 - x)])/(2 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 15 2014 *)
-
PARI
{a(n)=local(X=x+x*O(x^n)); polcoeff(2/(1-X)/(1-X+sqrt((1-X)^2-4*X^2/(1-X))),n,x)}
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*(1-x)^(m-k) + x*O(x^n)))),n)} \\ Paul D. Hanna, Sep 12 2012
Formula
G.f.: A(x) = (1-x - sqrt((1-x)^2 - 4*x^2/(1-x)))/(2*x^2).
a(n) = 2*a(n-1) + Sum_{i=1..n-2} a(i)*(a(n-1-i) - a(n-2-i)). a(n) = Sum_{i=0..floor(n/2)} (-1)^i * binomial(n+1-i,i) * binomial(2*(n+1)-3*i, n-2*i) /(n+1-i). - I. Tasoulas (jtas(AT)unipi.gr), Feb 15 2006
G.f.: (1/(1-x)^2)c(x^2/(1-x)^3), where c(x) is the g.f. of A000108. - Paul Barry, May 22 2009
1/(1-x-x/(1-x^2/(1-x-x/(1-x^2/(1-x-x/(1-x^2/(1-... (continued fraction). - Paul Barry, Jun 30 2009
a(n) = Sum_{k=0..floor(n/2)} Sum_{j=0..n-k} binomial(n-k,j)(0^(j+k)+(1/(j+0^j))*binomial(j,k)*binomial(j,k+1)). - Paul Barry, Jun 30 2009
G.f. satisfies: A(x) = (1 + x*A(x)) * (1 + x*(1-x)*A(x)). - Paul D. Hanna, Sep 12 2012
G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * (1-x)^k ). - Paul D. Hanna, Sep 12 2012
D-finite with recurrence: (n+2)*a(n) + (-4*n-3)*a(n-1) + (2*n+1)*a(n-2) + a(n-3) + (n-3)*a(n-4) = 0. - R. J. Mathar, Nov 26 2012
The recurrence is true, since by holonomic transformation, it can be computed formally using GFUN, associated with the equation: x^3 + x^2 - 2x + (x^3 + 3 x^2 -3x +1) A(x) + (x^5 + 2x^3 -4 x^2 + x) A'(x) = 0. - Pierre Lescanne, Jun 30 2015
G.f.: (1 - 1/(G(0)-x))/x^2 where G(k) = 1 + x/(1 + x/(x^2 - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 16 2012
a(n) ~ 2^(n/3-1/6) * 3^(n+2) * (13+3*sqrt(33))^((n+1)/3) * sqrt(4*(2879 + 561*sqrt(33))^(1/3) + 8*(7822 + 1362*sqrt(33))^(1/3) - 91 - 21*sqrt(33)) / (((26+6*sqrt(33))^(2/3) - (26+6*sqrt(33))^(1/3) - 8)^(n+3/2) * (4*(26+6*sqrt(33))^(1/3) - (26+6*sqrt(33))^(2/3) + 8) * n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Mar 13 2014
a(n) = Sum_{i=0..n+1} (-1)^i*hypergeom([(i+1)/2, i/2+1, i-n-1], [1, 2], -4). - Peter Luschny, May 03 2018
Extensions
More terms from I. Tasoulas (jtas(AT)unipi.gr), Feb 15 2006
Comments